1 Problem 1

- 1. f is continuous, S_1 is compact (closed and bounded). Hence, according to Weierstrass Theorem, f achieves its min and max over S_1 .
- 2. Since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$, f is coercive. Also, \mathbb{R}^4 is closed. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathbb{R}^4 , but not its max since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$.
- 3. S_2 is closed and f is coercive. Hence, by Corollary to Weierstrass Theorem, f achieves its min over S_2 , but not its max since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$.

2 Problem 2

- 1. No. Consider $f(x) = (1-x)^3$. Note that for x = 1, we have f'(1) = 0, $f''(1) \ge 0$. However, f(2) = -1 < 0 = f(1), which shows that x = 1 is not a local min.
- 2. $\nabla f(x) = 0 \Rightarrow [4(2x_1 x_2), -2(2x_1 x_2)]^T = 0$. The stationary points are the points of the line $\{(x_1, x_2) : 2x_1 = x_2\}$. Since $f(x_1, x_2) = (2x_1 x_2)^2 \ge 0$ and the zero value of f is attained by and only by the stationary points $\{(x_1, x_2) : 2x_1 = x_2\}$, all stationary points are global minima.

An alternative way to solve this problem is to use the positive semidefiniteness of the Hessian matrix to show f is convex. Hence any stationary point is a global min.

3 Problem 3

- 1. $f'(x) = 0 \Rightarrow x_1 = 0, x_2 = 2\sqrt{2}, x_3 = -2\sqrt{2}$ are the stationary points.
- 2. Since $f''(x_1) = -32 < 0$, x_1 is a local max. Since, $f''(x_2) = f(x_3) = 64 > 0$, the x_2, x_3 are a local minima.
- 3. Since, $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$ the global max does not exist. Function f is coercive and \mathbb{R} is closed, thus by Corollary to Weierstrass Theorem a global min exists and since $f(x_2) = f(x_3) = 0$ both x_2, x_3 are global minima.

4 Problem 4

- 1. The eigenvalues are 0 and 5. Hence, A is PSD.
- 2. The eigenvalues are -1 and 3. Hence, B is indefinite.
- 3. det([4]) = 4 > 0, det(A) = -5 < 0. Hence, C is not PSD. We can use a similar argument to show C is not NSD. Hence C is indefinite.
- 4. The eigenvalues of D are $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 5$. Hence, D is PD.

5.
$$det([3]) = 3 > 0$$
, $det\begin{pmatrix} 3 & 3\\ 3 & 5 \end{pmatrix} = 6 > 0$, $det(-E) = 45 > 0$. Hence, $-E$ is PD, and E is ND.