SOLUTIONS HW 1

1 Problem 1

1. f is continuous, \mathcal{S}_{1} is compact (closed and bounded). Hence, according to Weierstrass Theorem, f achieves its min and max over \mathcal{S}_{1}.
2. Since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty, f$ is coercive. Also, \mathbb{R}^{4} is closed. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathbb{R}^{4}, but not its max since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$.
3. \mathcal{S}_{2} is closed and f is coercive. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathcal{S}_{2}, but not its max since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$.

2 Problem 2

1. No. Consider $f(x)=(1-x)^{3}$. Note that for $x=1$, we have $f^{\prime}(1)=0, f^{\prime \prime}(1) \geq 0$. However, $f(2)=-1<0=f(1)$, which shows that $x=1$ is not a local min.
2. $\nabla f(x)=0 \Rightarrow\left[4\left(2 x_{1}-x_{2}\right),-2\left(2 x_{1}-x_{2}\right)\right]^{T}=0$. The stationary points are the points of the line $\left\{\left(x_{1}, x_{2}\right): 2 x_{1}=x_{2}\right\}$. Since $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2}\right)^{2} \geq 0$ and the zero value of f is attained by and only by the stationary points $\left\{\left(x_{1}, x_{2}\right): 2 x_{1}=x_{2}\right\}$, all stationary points are global minima.
An alternative way to solve this problem is to use the positive semidefiniteness of the Hessian matrix to show f is convex. Hence any stationary point is a global min.

3 Problem 3

1. $f^{\prime}(x)=0 \Rightarrow x_{1}=0, x_{2}=2 \sqrt{2}, x_{3}=-2 \sqrt{2}$ are the stationary points.
2. Since $f^{\prime \prime}\left(x_{1}\right)=-32<0, x_{1}$ is a local max. Since, $f^{\prime \prime}\left(x_{2}\right)=f\left(x_{3}\right)=64>0$, the x_{2}, x_{3} are a local minima.
3. Since, $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$ the global max does not exist. Function f is coercive and \mathbb{R} is closed, thus by Corollary to Weierstrass Theorem a global min exists and since $f\left(x_{2}\right)=f\left(x_{3}\right)=0$ both x_{2}, x_{3} are global minima.

4 Problem 4

1. The eigenvalues are 0 and 5 . Hence, A is PSD.
2. The eigenvalues are -1 and 3 . Hence, B is indefinite.
3. $\operatorname{det}([4])=4>0, \operatorname{det}(A)=-5<0$. Hence, C is not PSD. We can use a similar argument to show C is not NSD. Hence C is indefinite.
4. The eigenvalues of D are $\lambda_{1}=2, \lambda_{2}=\lambda_{3}=5$. Hence, D is PD.
5. $\operatorname{det}([3])=3>0, \operatorname{det}\left(\begin{array}{ll}3 & 3 \\ 3 & 5\end{array}\right)=6>0, \operatorname{det}(-E)=45>0$. Hence, $-E$ is PD, and E is ND.
