
SOLUTIONS HW 2

1 Problem 1

1. Let us consider f(x) = −x2 and α = −1, then S = (−∞,−1] ∪ [1,+∞). The S is not convex, because
although −1, 1 ∈ S, we have (−1 + 1)/2 = 0 /∈ S.

2. By triangle inequality, we have ∥tx+ (1− t)y∥p ≤ ∥tx∥p + ∥(1− t)y∥p = t∥x∥p + (1 − t)∥y∥p. Hence
the ℓp norm ∥·∥p is a convex function, and its sublevel set is convex.

3. We observe that f can be rewritten as f(x) = 1
2x

TQx+ pTx+ r with Q being given as

Q =

4 0 2
0 4 3
2 3 1


Therefore, we can directly get

∇2f =

4 0 2
0 4 3
2 3 1

 , ∀x

Since det([4]) = 4 > 0, det

(
4 0
0 4

)
= 16 > 0 and det(∇2f) = −36 < 0, we know ∇2f is not PSD.

Since det(−[4]) = −4 < 0, det

(
−4 0
0 −4

)
= 16 > 0 and det(−∇2f) = 36 > 0, we know ∇2f is not

NSD. Therefore, ∇2f is indefinite. We can conclude that f is neither convex nor concave.

4. Yes. The function f(x) = x log(x), x > 0 is convex since f ′′(x) = 1
x > 0. We also prove that the

function g(x, y) = x log(x) + y log(y) is convex. Indeed, let us fix x1, x2, y1, y2 ∈ R+ and a ∈ [0, 1],
then

g(ax1 + (1− a)x2, ay1 + (1− a)y2) = f(ax1 + (1− a)x2) + f(ay1 + (1− a)y2)

≤ af(x1) + (1− a)f(x2) + af(y1) + (1− a)f(y2)

= ag(x1, y1) + (1− a)g(x2, y2)

(1)

As a result the set S ≡ {(x1, x2) : x1, x2 > 0, g(x1, x2) ≤ 4} is convex.

5. Let us fix x1, x2 ∈ Rn and a ∈ [0, 1]. By concavity of g it holds g(ax1+(1−a)x2) ≥ ag(x1)+(1−a)g(x2).
In order to prove that f ◦ g is concave, we proceed as follows

f(g(ax1 + (1− a)x2)) ≥ f(ag(x1) + (1− a)g(x2)), by concavity of g, & the fact f is increasing

≥ af(g(x1)) + (1− a)f(g(x2)), by concavity of f
(2)

Hence, f ◦ g is concave.

2 Problem 2

1. The function f does not have maximum over R3 because f(x1, 0, 0) = 2x2
1 − 2x1 + 5 is not bounded.

The function f has a unique minimum. Indeed,

∇f = [4x1 − 2, 4x2 + 2x3 − 2, 2x3 + 2x2 − 2]T (3)

1



and ∇f(x) = 0 ⇒ (x1, x2, x3) = (0.5, 0, 1). Since,

∇2f =

4 0 0
0 4 2
0 2 2

 =

4 0 0
0 2 0
0 0 0

+

0 0 0
0 2 2
0 2 2

 (4)

is PD, we conclude the result.

2. Since Q is PD we have ∇f(x) = Qx. We consider g(ak) = f(xk − ak Qxk) and we minimize g

g(ak) = f((I − ak Q)xk) =
1

2
xT
kQxk − (xT

kQ
2xk)ak +

1

2
(xT

kQ
3xk)a

2
k (5)

Hence g(ak) is minimized when ak =
xT
k Q2xk

xT
k Q3xk

3. Let us consider matrix A whose ith row is ai and the column vector b = (b1, .., bn)
T , then

f(x) =
1

n
(Ax− b)T (Ax− b) +

λ

2
xT Ix

=
1

n
(xTATAx+ bT b− bTAx− xTAT b) +

λ

2
xT Ix

(6)

We have

∇f =
1

n
(2ATAx− 2AT b) + λx =

(
2

n
ATA+ λI

)
x− 2

n
AT b (7)

and ∇f = 0 ⇒ x∗ =
(
ATA+ n

2λI
)−1

AT b. Also, ∇2f = 2
nA

TA + λI is PD because xT∇2x =
2
n (Ax)

T (Ax) + λxTx > 0 for all x ̸= 0. Hence, the optimal solution x∗ is unique. It is worth
mentioning that ATA =

∑n
i=1 aia

T
i and AT b =

∑n
i=1 a

T
i bi.

3 Problem 3

We must find the minimum m such that

f(xk + βmα̃dk) ≤ f(xk) + σβmα̃∇fT dk (8)

where ∇f = [4x1, 8x
3
2]

T , and since we apply steepest decent we choose dk = −∇f . Hence, by substitution
we obtain

f(1− 0.5m4, 0) = 2(1− 0.5m4)2 ≤ 2− 0.80.5m (9)

and the minimum m that satisfies the inequality is m = 2, which implies that ak = α̃βm = 1 · 0.52 = 0.25.

4 Problem 4

We have

f(xk)− f(xk+1) ≥ (∇f(xk))
T αD∇f(xk)−

L

2
∥αD∇f(xk)∥22

≥ α

(
λmin − L

2
αλ2

max

)
∥∇f(xk)∥2

(10)

We know λmin − L
2 αλ

2
max > 0. We observe that

α

(
λmin − L

2
αλ2

max

) n∑
k=0

∥∇f(xk)∥2 ≤ f(x0)− f(xn+1) ≤ f(x0)− fmin (11)

As a result for all n ∈ N
n∑

k=0

∥∇f(xk)∥2 ≤ f(x0)− fmin

α
(
λmin − L

2 αλ
2
max

) (12)

which implies that as n → ∞ the series converges and as a result lim
n→∞

∇f(xn) = 0.

2


