SOLUTIONS HW 2

1 Problem 1

1. Let us consider $f(x)=-x^{2}$ and $\alpha=-1$, then $\mathcal{S}=(-\infty,-1] \cup[1,+\infty)$. The \mathcal{S} is not convex, because although $-1,1 \in \mathcal{S}$, we have $(-1+1) / 2=0 \notin \mathcal{S}$.
2. By triangle inequality, we have $\|t x+(1-t) y\|_{p} \leq\|t x\|_{p}+\|(1-t) y\|_{p}=t\|x\|_{p}+(1-t)\|y\|_{p}$. Hence the ℓ_{p} norm $\|\cdot\|_{p}$ is a convex function, and its sublevel set is convex.
3. We observe that f can be rewritten as $f(x)=\frac{1}{2} x^{T} Q x+p^{T} x+r$ with Q being given as

$$
Q=\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 4 & 3 \\
2 & 3 & 1
\end{array}\right]
$$

Therefore, we can directly get

$$
\nabla^{2} f=\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 4 & 3 \\
2 & 3 & 1
\end{array}\right], \forall x
$$

Since $\operatorname{det}([4])=4>0$, $\operatorname{det}\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)=16>0$ and $\operatorname{det}\left(\nabla^{2} f\right)=-36<0$, we know $\nabla^{2} f$ is not PSD. Since $\operatorname{det}(-[4])=-4<0$, $\operatorname{det}\left(\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right)=16>0$ and $\operatorname{det}\left(-\nabla^{2} f\right)=36>0$, we know $\nabla^{2} f$ is not NSD. Therefore, $\nabla^{2} f$ is indefinite. We can conclude that f is neither convex nor concave.
4. Yes. The function $f(x)=x \log (x), x>0$ is convex since $f^{\prime \prime}(x)=\frac{1}{x}>0$. We also prove that the function $g(x, y)=x \log (x)+y \log (y)$ is convex. Indeed, let us fix $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}^{+}$and $a \in[0,1]$, then

$$
\begin{align*}
g\left(a x_{1}+(1-a) x_{2}, a y_{1}+(1-a) y_{2}\right) & =f\left(a x_{1}+(1-a) x_{2}\right)+f\left(a y_{1}+(1-a) y_{2}\right) \\
& \leq a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)+a f\left(y_{1}\right)+(1-a) f\left(y_{2}\right) \tag{1}\\
& =a g\left(x_{1}, y_{1}\right)+(1-a) g\left(x_{2}, y_{2}\right)
\end{align*}
$$

As a result the set $\mathcal{S} \equiv\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2}>0, \quad g\left(x_{1}, x_{2}\right) \leq 4\right\}$ is convex.
5. Let us fix $x_{1}, x_{2} \in \mathbb{R}^{n}$ and $a \in[0,1]$. By concavity of g it holds $g\left(a x_{1}+(1-a) x_{2}\right) \geq a g\left(x_{1}\right)+(1-a) g\left(x_{2}\right)$. In order to prove that $f \circ g$ is concave, we proceed as follows

$$
\begin{align*}
f\left(g\left(a x_{1}+(1-a) x_{2}\right)\right) & \geq f\left(a g\left(x_{1}\right)+(1-a) g\left(x_{2}\right)\right), \quad \text { by concavity of } \mathrm{g}, \& \text { the fact } \mathrm{f} \text { is increasing } \tag{2}\\
& \geq a f\left(g\left(x_{1}\right)\right)+(1-a) f\left(g\left(x_{2}\right)\right), \quad \text { by concavity of } \mathrm{f}
\end{align*}
$$

Hence, $f \circ g$ is concave.

2 Problem 2

1. The function f does not have maximum over \mathbb{R}^{3} because $f\left(x_{1}, 0,0\right)=2 x_{1}^{2}-2 x_{1}+5$ is not bounded. The function f has a unique minimum. Indeed,

$$
\begin{equation*}
\nabla f=\left[4 x_{1}-2,4 x_{2}+2 x_{3}-2,2 x_{3}+2 x_{2}-2\right]^{T} \tag{3}
\end{equation*}
$$

and $\nabla f(x)=0 \Rightarrow\left(x_{1}, x_{2}, x_{3}\right)=(0.5,0,1)$. Since,

$$
\nabla^{2} f=\left(\begin{array}{lll}
4 & 0 & 0 \tag{4}\\
0 & 4 & 2 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right)
$$

is PD , we conclude the result.
2. Since Q is PD we have $\nabla f(x)=Q x$. We consider $g\left(a_{k}\right)=f\left(x_{k}-a_{k} Q x_{k}\right)$ and we minimize g

$$
\begin{equation*}
g\left(a_{k}\right)=f\left(\left(I-a_{k} Q\right) x_{k}\right)=\frac{1}{2} x_{k}^{T} Q x_{k}-\left(x_{k}^{T} Q^{2} x_{k}\right) a_{k}+\frac{1}{2}\left(x_{k}^{T} Q^{3} x_{k}\right) a_{k}^{2} \tag{5}
\end{equation*}
$$

Hence $g\left(a_{k}\right)$ is minimized when $a_{k}=\frac{x_{k}^{T} Q^{2} x_{k}}{x_{k}^{T} Q^{3} x_{k}}$
3. Let us consider matrix A whose $i^{t h}$ row is a_{i} and the column vector $b=\left(b_{1}, . ., b_{n}\right)^{T}$, then

$$
\begin{align*}
f(x) & =\frac{1}{n}(A x-b)^{T}(A x-b)+\frac{\lambda}{2} x^{T} I x \tag{6}\\
& =\frac{1}{n}\left(x^{T} A^{T} A x+b^{T} b-b^{T} A x-x^{T} A^{T} b\right)+\frac{\lambda}{2} x^{T} I x
\end{align*}
$$

We have

$$
\begin{equation*}
\nabla f=\frac{1}{n}\left(2 A^{T} A x-2 A^{T} b\right)+\lambda x=\left(\frac{2}{n} A^{T} A+\lambda I\right) x-\frac{2}{n} A^{T} b \tag{7}
\end{equation*}
$$

and $\nabla f=0 \Rightarrow x^{*}=\left(A^{T} A+\frac{n}{2} \lambda I\right)^{-1} A^{T} b$. Also, $\nabla^{2} f=\frac{2}{n} A^{T} A+\lambda I$ is PD because $x^{T} \nabla^{2} x=$ $\frac{2}{n}(A x)^{T}(A x)+\lambda x^{T} x>0$ for all $x \neq 0$. Hence, the optimal solution x^{*} is unique. It is worth mentioning that $A^{T} A=\sum_{i=1}^{n} a_{i} a_{i}^{T}$ and $A^{T} b=\sum_{i=1}^{n} a_{i}^{T} b_{i}$.

3 Problem 3

We must find the minimum m such that

$$
\begin{equation*}
f\left(x_{k}+\beta^{m} \tilde{\alpha} d_{k}\right) \leq f\left(x_{k}\right)+\sigma \beta^{m} \tilde{\alpha} \nabla f^{T} d_{k} \tag{8}
\end{equation*}
$$

where $\nabla f=\left[4 x_{1}, 8 x_{2}^{3}\right]^{T}$, and since we apply steepest decent we choose $d_{k}=-\nabla f$. Hence, by substitution we obtain

$$
\begin{equation*}
f\left(1-0.5^{m} 4,0\right)=2\left(1-0.5^{m} 4\right)^{2} \leq 2-0.80 .5^{m} \tag{9}
\end{equation*}
$$

and the minimum m that satisfies the inequality is $m=2$, which implies that $a_{k}=\tilde{\alpha} \beta^{m}=1 \cdot 0.5^{2}=0.25$.

4 Problem 4

We have

$$
\begin{align*}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & \geq\left(\nabla f\left(x_{k}\right)\right)^{T} \alpha D \nabla f\left(x_{k}\right)-\frac{L}{2}\left\|\alpha D \nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \geq \alpha\left(\lambda_{\min }-\frac{L}{2} \alpha \lambda_{\max }^{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \tag{10}
\end{align*}
$$

We know $\lambda_{\text {min }}-\frac{L}{2} \alpha \lambda_{\text {max }}^{2}>0$. We observe that

$$
\begin{equation*}
\alpha\left(\lambda_{\min }-\frac{L}{2} \alpha \lambda_{\max }^{2}\right) \sum_{k=0}^{n}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x_{0}\right)-f\left(x_{n+1}\right) \leq f\left(x_{0}\right)-f_{\min } \tag{11}
\end{equation*}
$$

As a result for all $n \in \mathbb{N}$

$$
\begin{equation*}
\sum_{k=0}^{n}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{f\left(x_{0}\right)-f_{\min }}{\alpha\left(\lambda_{\min }-\frac{L}{2} \alpha \lambda_{\max }^{2}\right)} \tag{12}
\end{equation*}
$$

which implies that as $n \rightarrow \infty$ the series converges and as a result $\lim _{n \rightarrow \infty} \nabla f\left(x_{n}\right)=0$.

