
SOLUTIONS HW 3

Problem 1
(a) Note that f has a unique global minimum at x∗ = 0, ∇f(x) = 4x3, and ∇2f(x) = 12x2. Then for

xk ̸= 0:

xk+1 = xk − α(4xk)3

12x2
k

= (1 − α

3 )xk.

Therefore, as long as |1 − α
3 | < 1, xk converges to x∗ = 0 as k → ∞. The range of α can be found

using |1 − α
3 | < 1 ⇒ 0 < α < 6. Note that for α = 3, the method converges in one step.

For this range of α and any x0 ∈ R, we can show

xk = (1 − α

3 )kx0,

hence xk converges to 0 geometrically, i.e., the method converges "linearly".

(b)

∇f(x) = ex − e−x

ex + e−x
, ∇2f(x) = 4e2x

(e2x + 1)2 .

Substituting values in formula for Newton’s method for α = 1, we get the desired expression.
(For the extra numerical task, here is some example code:

import numpy as np
alpha = 1
x = 1
n = 5
i t e r a t e s = np . z e ro s (n)
f o r i in range (n ) :

x = x − (np . exp (4∗x) −1)/(4∗np . exp (2∗x ) )
i t e r a t e s [ i ] = x

pr in t ( i t e r a t e s )

For initialization x0 = 1, iterates are:

[−8.13430204e − 01 4.09402317e − 01 −4.73049165e − 02 7.06028036e − 05 −2.34633642e − 13] .

For initialization x0 = 1.1, iterates are:

[−1.12855259e + 00 1.23413113e + 00 −1.69516598e + 00 5.71536010e + 00 −2.30213565e + 04] .

The iterates converges to x∗ = 0 with x0 = 1 and diverges for x0 = 1.1. We can see that Newton’s
method converges as long as the initial estimate is sufficiently close to x∗. )

(c) Since the cost function is quadratic and strongly convex, the Newton’s method converges in one step
as we discussed in the lecture note.
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Problem 2
Since f(x) = − cos(x), we have ∇f(x) = sin(x) and ∇2f(x) = cos(x). The Newton’s method with α = 1
becomes: xk+1 = xk − sin(xk)

cos(xk) = xk − tan(xk). Therefore, we have:

x1 = x0 − tan(x0)
x2 = x1 − tan(x1) = x0 − tan(x0) − tan(x0 − tan(x0)).

x2 = x0 ⇒ tan(−x0) = tan(x0 − tan(x0)). Therefore it suffices to show that ∃ x0 ∈ [ π
4 , π

2 ) such that
−x0 = x0 − tan(x0) ⇒ 2x0 = tan(x0). Let h(x) = 2x − tan(x), x ∈ [ π

4 , π
2 ). Then h(x) is continuous and

h( π
4 ) = π

2 − 1 < 0, h( π
4 ) tends to +∞. By intermediate value theorem, there exists x0 ∈ [ π

4 , π
2 ) such that

h(x0) = 0. For this x0, the Newton’s methods does not converge since the iterates are oscillating between
x0 and x1.

Problem 3
(a) Suppose to the contrary that there are two global minimizers x∗

1 and x∗
2, where f takes the value of

f∗. Then, strict convexity of f implies

f

(
x∗

1 + x∗
2

2

)
<

1
2f(x∗

1) + 1
2f(x∗

2) = f∗

This is a contradiction as f attains a lower value at x∗
1+x∗

2
2 than f∗. Thus, f has a unique minimizer.

(b) One such example is f(x) = e−x and S = [0, ∞).

(c) All minimizers of f over S belong to nonempty sub-level sets of f intersected with S. Next, we show
that a sub-level set Xr := {x|f(x) ≤ r} of f is compact for any r in the range of f . Consider any
nonempty sublevel set Xr. By the definition of the sub-level set and the continuity of f , this sub-level
set is closed. Suppose the sub-level set is not bounded. Then, there is a sequence of {xk} in Xr such
that ∥xk∥ → ∞. However, since f is radially unbounded, f(xk) → ∞, meaning that not all these points
in the sequence can belong to the sublevel set. Thus, Xr is bounded. Hence, Xr is compact. Thus,
Xr ∩ S is compact, meaning that f must attain its minimum over this set. This minimum coincides
with the minimum of f over S.

(d) Consider a specific point z ∈ R. Let f(x) = 1
2 ∥x − z∥2. Notice that z is fixed, while x varies over Rn.

Now, f is radially unbounded and is strictly convex. Part (c) shows that f is minimized uniquely over
S, meaning that projection is a well-defined function!

Problem 4
If x ∈ [−1, 1], then the projection of x will be x. In this case, the distance from x to the projected point is
0, which cannot be further reduced (the distance has to be non-negative).

If x > 1, we need to minimize |z − x|2 for −1 ≤ z ≤ 1. We can use our geometric insight to figure out
that |z − x|2 is monotonically decreasing for any z ∈ (−∞, x]. Since [−1, 1] ⊂ (−∞, x], minimizing |z − x|2
over −1 ≤ z ≤ 1 just requires setting z = 1. Hence the projected point is 1.

If x < −1, we can use a similar argument to figure out that the projected point is −1. (For fixed x < −1,
the quadratic function |z − x|2 is monotonically increasing for any z ∈ [x, ∞).)
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