SOLUTIONS HW 3

Problem 1

(a) Note that f has a unique global minimum at $x^{*}=0, \nabla f(x)=4 x^{3}$, and $\nabla^{2} f(x)=12 x^{2}$. Then for $x_{k} \neq 0$:

$$
x_{k+1}=x_{k}-\frac{\alpha\left(4 x_{k}\right)^{3}}{12 x_{k}^{2}}=\left(1-\frac{\alpha}{3}\right) x_{k} .
$$

Therefore, as long as $\left|1-\frac{\alpha}{3}\right|<1, x_{k}$ converges to $x^{*}=0$ as $k \rightarrow \infty$. The range of α can be found using $\left|1-\frac{\alpha}{3}\right|<1 \Rightarrow 0<\alpha<6$. Note that for $\alpha=3$, the method converges in one step.
For this range of α and any $x_{0} \in \mathbb{R}$, we can show

$$
x_{k}=\left(1-\frac{\alpha}{3}\right)^{k} x_{0}
$$

hence x_{k} converges to 0 geometrically, i.e., the method converges "linearly".
(b)

$$
\nabla f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad \nabla^{2} f(x)=\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}
$$

Substituting values in formula for Newton's method for $\alpha=1$, we get the desired expression.
(For the extra numerical task, here is some example code:

```
import numpy as np
alpha = 1
x = 1
n = 5
iterates = np.zeros(n)
for i in range(n):
    x = x - (np.exp (4*x) - 1)/ (4*np.exp (2*x ))
    iterates[i] = x
print(iterates)
```

For initialization $x_{0}=1$, iterates are:

$$
\left[\begin{array}{lllll}
-8.13430204 e-01 & 4.09402317 e-01 & -4.73049165 e-02 & 7.06028036 e-05 & -2.34633642 e-13
\end{array}\right]
$$

For initialization $x_{0}=1.1$, iterates are:

$$
\left[\begin{array}{lllll}
-1.12855259 e+00 & 1.23413113 e+00 & -1.69516598 e+00 & 5.71536010 e+00 & -2.30213565 e+04
\end{array}\right]
$$

The iterates converges to $x^{*}=0$ with $x_{0}=1$ and diverges for $x_{0}=1.1$. We can see that Newton's method converges as long as the initial estimate is sufficiently close to x^{*}.)
(c) Since the cost function is quadratic and strongly convex, the Newton's method converges in one step as we discussed in the lecture note.

Problem 2

Since $f(x)=-\cos (x)$, we have $\nabla f(x)=\sin (x)$ and $\nabla^{2} f(x)=\cos (x)$. The Newton's method with $\alpha=1$ becomes: $x_{k+1}=x_{k}-\frac{\sin \left(x_{k}\right)}{\cos \left(x_{k}\right)}=x_{k}-\tan \left(x_{k}\right)$. Therefore, we have:

$$
\begin{aligned}
& x_{1}=x_{0}-\tan \left(x_{0}\right) \\
& x_{2}=x_{1}-\tan \left(x_{1}\right)=x_{0}-\tan \left(x_{0}\right)-\tan \left(x_{0}-\tan \left(x_{0}\right)\right) .
\end{aligned}
$$

$x_{2}=x_{0} \Rightarrow \tan \left(-x_{0}\right)=\tan \left(x_{0}-\tan \left(x_{0}\right)\right)$. Therefore it suffices to show that $\exists x_{0} \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ such that $-x_{0}=x_{0}-\tan \left(x_{0}\right) \Rightarrow 2 x_{0}=\tan \left(x_{0}\right)$. Let $h(x)=2 x-\tan (x), x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then $h(x)$ is continuous and $h\left(\frac{\pi}{4}\right)=\frac{\pi}{2}-1<0, h\left(\frac{\pi}{4}\right)$ tends to $+\infty$. By intermediate value theorem, there exists $x_{0} \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ such that $h\left(x_{0}\right)=0$. For this x_{0}, the Newton's methods does not converge since the iterates are oscillating between x_{0} and x_{1}.

Problem 3

(a) Suppose to the contrary that there are two global minimizers x_{1}^{*} and x_{2}^{*}, where f takes the value of f^{*}. Then, strict convexity of f implies

$$
f\left(\frac{x_{1}^{*}+x_{2}^{*}}{2}\right)<\frac{1}{2} f\left(x_{1}^{*}\right)+\frac{1}{2} f\left(x_{2}^{*}\right)=f^{*}
$$

This is a contradiction as f attains a lower value at $\frac{x_{1}^{*}+x_{2}^{*}}{2}$ than f^{*}. Thus, f has a unique minimizer.
(b) One such example is $f(x)=e^{-x}$ and $\mathcal{S}=[0, \infty)$.
(c) All minimizers of f over \mathcal{S} belong to nonempty sub-level sets of f intersected with \mathcal{S}. Next, we show that a sub-level set $\mathcal{X}_{r}:=\{x \mid f(x) \leq r\}$ of f is compact for any r in the range of f. Consider any nonempty sublevel set \mathcal{X}_{r}. By the definition of the sub-level set and the continuity of f, this sub-level set is closed. Suppose the sub-level set is not bounded. Then, there is a sequence of $\left\{x_{k}\right\}$ in \mathcal{X}_{r} such that $\left\|x_{k}\right\| \rightarrow \infty$. However, since f is radially unbounded, $f\left(x_{k}\right) \rightarrow \infty$, meaning that not all these points in the sequence can belong to the sublevel set. Thus, \mathcal{X}_{r} is bounded. Hence, \mathcal{X}_{r} is compact. Thus, $\mathcal{X}_{r} \cap S$ is compact, meaning that f must attain its minimum over this set. This minimum coincides with the minimum of f over \mathcal{S}.
(d) Consider a specific point $z \in \mathbb{R}$. Let $f(x)=\frac{1}{2}\|x-z\|^{2}$. Notice that z is fixed, while x varies over \mathbb{R}^{n}. Now, f is radially unbounded and is strictly convex. Part (c) shows that f is minimized uniquely over \mathcal{S}, meaning that projection is a well-defined function!

Problem 4

If $x \in[-1,1]$, then the projection of x will be x. In this case, the distance from x to the projected point is 0 , which cannot be further reduced (the distance has to be non-negative).

If $x>1$, we need to minimize $|z-x|^{2}$ for $-1 \leq z \leq 1$. We can use our geometric insight to figure out that $|z-x|^{2}$ is monotonically decreasing for any $z \in(-\infty, x]$. Since $[-1,1] \subset(-\infty, x]$, minimizing $|z-x|^{2}$ over $-1 \leq z \leq 1$ just requires setting $z=1$. Hence the projected point is 1 .

If $x<-1$, we can use a similar argument to figure out that the projected point is -1 . (For fixed $x<-1$, the quadratic function $|z-x|^{2}$ is monotonically increasing for any $z \in[x, \infty)$.)

