SOLUTIONS HW 4

1 Problem 1

The \mathcal{S} is a closed convex set. The minimizer x^{*} is the projection of 0 in \mathcal{S}. Thus, in order to show that $x^{*}=A^{T}\left(A A^{T}\right)^{-1} b$ is the projection of 0 in \mathcal{S} it suffices to show that

$$
\begin{equation*}
\left(x^{*}-0\right)^{T}\left(x-x^{*}\right) \geq 0, \quad \forall x \in \mathcal{S} \tag{1}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\left(x^{*}\right)^{T}\left(x-x^{*}\right) & =\left(b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A\right)\left(x-A^{T}\left(A A^{T}\right)^{-1} b\right) \\
& =b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A A^{T}\left(A A^{T}\right)^{-1} b \\
& =b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b-b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b, \quad \text { we used } A x=b \tag{2}\\
& =0
\end{align*}
$$

2 Problem 2

1. Let us consider a vector x such that $x^{T} A A^{T}=0$. Multiplying by x on the right, we have

$$
\begin{equation*}
x^{T} A A^{T} x=0 \Rightarrow\left\|x^{T} A\right\|^{2}=0 \tag{3}
\end{equation*}
$$

Since the rows of A are linearly independent, we must have $x=0$. Hence,

$$
\begin{equation*}
x^{T} A A^{T}=0 \Rightarrow x=0 \tag{4}
\end{equation*}
$$

which implies that $A A^{T}$ is invertible.
2. In order to verify that $z^{*}=x-A^{T}\left(A A^{T}\right)^{-1}(A x-b)$ is the project of x on \mathcal{S} it suffices to show that $\left(z^{*}-x\right)^{T}\left(z-z^{*}\right) \geq 0$ for all $z \in \mathcal{S}$. Indeed,

$$
\begin{align*}
& \left(z^{*}-x\right)^{T}\left(z-z^{*}\right) \\
= & \left(x^{T}-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A-x^{T}\right)\left(z-x+A^{T}\left(A A^{T}\right)^{-1}(A x-b)\right) \\
= & (b-A x)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A z+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A A^{T}\left(A A^{T}\right)^{-1}(A x-b) \\
= & (b-A x)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b \\
= & 0 \tag{5}
\end{align*}
$$

3 Problem 3

1. The derivative of the Lagrangian is

$$
\begin{equation*}
\nabla f+\lambda \nabla h=0 \Rightarrow 2 x+\lambda \mathbf{1}=0 \tag{6}
\end{equation*}
$$

This implies that $x_{1}=\ldots=x_{n}=-\lambda / 2$ and $\sum_{i=1}^{n} x_{i}=2$. Hence, $x^{*}=[2 / n, \ldots, 2 / n]^{T}$.
We can also check $\nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right)=2 I \succ 0$. Hence x^{*} is a local min. Since f is coercive, we know the global min exists and the only local min x^{*} is also the global min.
2. The derivative of the Lagrangian is

$$
\begin{equation*}
\nabla f+\lambda \nabla h=0 \Rightarrow \mathbf{1}+\lambda 2 x=0 \tag{7}
\end{equation*}
$$

This implies that $x_{1}=\ldots=x_{n}=-1 /(2 \lambda)$ and $\|x\|^{2}=1$. Hence, we have two stationary points $x^{*}=[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$ or $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$. However, for $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$, we have

$$
\nabla^{2} f\left(x^{*}\right)+\lambda^{*} \nabla^{2} h\left(x^{*}\right)=-\sqrt{n} I \prec 0
$$

This is not a local min. For $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$, we have

$$
\nabla^{2} f\left(x^{*}\right)+\lambda^{*} \nabla^{2} h\left(x^{*}\right)=\sqrt{n} I \succ 0
$$

This is a local min. Since the feasible set is compact, we know the global min exists and this point will also be the local min.

