SOLUTIONS HW 6

1 Problem 1

For any $z \in \mathcal{Z}$, we have:

$$
g(y, z) \leq \max _{y \in \mathcal{Y}} g(y, z)
$$

Next, we minimize both sides over $z \in \mathcal{Z}$, and the inequality still holds

$$
\min _{z \in \mathcal{Z}} g(y, z) \leq \min _{z \in \mathcal{Z}} \max _{y \in \mathcal{Y}} g(y, z)
$$

The left side of the above inequality is a function of y, and the right side is a constant upper bound for the left side over all y. Therefore, the maximum of the left side over y should still be upper bounded by the constant on the right side. Hence we have

$$
\max _{y \in \mathcal{Y}} \min _{z \in \mathcal{Z}} g(y, z) \leq \min _{z \in \mathcal{Z}} \max _{y \in \mathcal{Y}} g(y, z)
$$

2 Problem 2

The original problem is equivalent to

$$
\operatorname{minimize} c^{\top} x
$$

subject to $A x-b \leq 0$,
where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], c=\left[\begin{array}{l}1 \\ 1\end{array}\right], A=\left[\begin{array}{cc}-1 & -2 \\ 3 & 1 \\ -1 & 1\end{array}\right]$, and $b=\left[\begin{array}{c}-1 \\ 5 \\ 8\end{array}\right]$. To find the dual, for $\mu=\left[\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right] \geq 0$, we calculate $D(\mu)$ as:

$$
\begin{aligned}
D(\mu) & =\min _{x \in \mathbb{R}^{2}} c^{\top} x+\mu^{\top}(A x-b) \\
& =\min _{x \in \mathbb{R}^{2}}\left(c^{\top}+\mu^{\top} A\right) x-\mu^{\top} b \\
& = \begin{cases}-\infty & \text { if } c^{\top}+\mu^{\top} A \neq 0 \\
-\mu^{\top} b & \text { if } c^{\top}+\mu^{\top} A=0 .\end{cases}
\end{aligned}
$$

Notice that $c^{\top}+\mu^{\top} A=0$ is equivalent to $A^{\top} \mu=-c$. Therefore, the dual problem is:

$$
\begin{aligned}
& \operatorname{maximize}-\mu^{\top} b \\
& \text { subject to } A^{\top} \mu=-c, \mu \geq 0
\end{aligned}
$$

Specifically, the dual program is

$$
\begin{align*}
\operatorname{minimize} & \mu_{1}-5 \mu_{2}-8 \mu_{3} \\
\text { subject to } & -\mu_{1}+3 \mu_{2}-\mu_{3}=-1 \tag{1}\\
& -2 \mu_{1}+\mu_{2}+\mu_{3}=-1 \\
& \mu_{1} \geq 0, \quad \mu_{2} \geq 0, \mu_{3} \geq 0
\end{align*}
$$

One way to verify strong duality is to use the Slater's condition. For linear programming, finding a strictly feasible point for the primal problem (e.g. $x=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$ for the above problem) does guarantee the strong duality to hold.

3 Problem 3

The Lagrangian of the problem is $L(x, \mu)=x^{\top} Q x+\mu^{\top}(A x-b)$. Thus the Lagrangian dual function is:

$$
\begin{aligned}
D(\mu) & =\min _{x} L(x, \mu) \\
& =\min _{x} x^{\top} Q x+\mu^{\top}(A x-b) \\
& =\min _{x} x^{\top} Q x+\mu^{\top} A x-\mu^{\top} b .
\end{aligned}
$$

Since Q is positive definite, we can just take the derivative of $L(x, \mu)$ with respect to x and set it equal to 0 . Then we obtain $x=-\frac{1}{2} Q^{-1} A^{\top} \mu$, which leads to:

$$
D(\mu)=-\frac{1}{4} \mu^{\top} A Q^{-1} A^{\top} \mu-\mu^{\top} b
$$

Therefore, the dual problem is:

$$
\text { maximize }-\frac{1}{4} \mu^{\top} A Q^{-1} A^{\top} \mu-\mu^{\top} b
$$

4 Problem 4

Let \bar{x} be a limit point of $\left\{x^{(k)}\right\}$ given by

$$
\bar{x}=\min _{k \rightarrow \infty, k \in \mathcal{K}} x^{(k)}
$$

Assuming that $\min _{h(x)=0} f(x)=f^{*}$ exists, then we have:

$$
\begin{aligned}
f^{*} & =\min _{h(x)=0} f(x) \\
& =\min _{h(x)=0} f(x)+\lambda^{\top} h(x)+c_{k}\|h(x)\|^{2} \\
& \geq \min f(x)+\lambda^{\top} h(x)+c_{k}\|h(x)\|^{2} \\
& =f\left(x^{(k)}\right)+\lambda^{\top} h\left(x^{(k)}\right)+c_{k}\left\|h\left(x^{(k)}\right)\right\|^{2} .
\end{aligned}
$$

This implies that

$$
\begin{align*}
c_{k}\left\|h\left(x^{(k)}\right)\right\|^{2}+\lambda^{\top} h\left(x^{(k)}\right) & \leq f^{*}-f\left(x^{(k)}\right) \\
\Rightarrow c_{k}\left\|h\left(x^{(k)}\right)\right\|^{2}-\|\lambda\|\left\|h\left(x^{(k)}\right)\right\| & \leq f^{*}-f\left(x^{(k)}\right) \\
\Rightarrow-\|\lambda\|\left\|h\left(x^{(k)}\right)\right\| & \leq f^{*}-f\left(x^{(k)}\right) \tag{2}
\end{align*}
$$

where the second step applies Cauchy-Schwarz inequality. By continuity of f, we have $\lim _{k \rightarrow \infty} f\left(x^{(k)}\right)=$ $f(\bar{x})$. Thus as $k \rightarrow \infty, f^{*}-f\left(x^{(k)}\right)$ goes to $f^{*}-f(\bar{x})$ which is finite. Since $c_{k} \rightarrow \infty$ as $k \rightarrow \infty$, we get

$$
\lim _{k \rightarrow \infty, k \in \mathcal{K}}\left\|h\left(x^{(k)}\right)\right\|=0
$$

By continuity of $\|h(x)\|$, we get

$$
\lim _{k \rightarrow \infty, k \in \mathcal{K}}\left\|h\left(x^{(k)}\right)\right\|=\|h(\bar{x})\|=0
$$

Taking limit as $k \rightarrow \infty, k \in \mathcal{K}$ in (2), we get

$$
f^{*}-f(\bar{x}) \geq 0
$$

But \bar{x} satisfies $h(\bar{x})=0$ and so $f(\bar{x}) \geq f^{*}$. Hence, every limit point is a global minimum.

5 Problem 5

Yes, the given constrained optimization problem is convex. Suppose $t=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$ and $c=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top}$, then the give optimization problem is equivalent to:

$$
\begin{array}{r}
\operatorname{minimize} c^{\top} t \\
\text { subject to } g_{1} \leq 0 \\
g_{2}=0 \\
g_{3} \leq 0
\end{array}
$$

where

$$
\begin{aligned}
& g_{1}=c_{1}^{\top} t, c_{1}=\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right]^{\top} \\
& g_{2}=c_{2}^{\top} t-10, c_{2}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\top} \\
& g_{3}=t^{\top} Q t+c_{3}^{\top} t, Q=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \succeq 0, c_{3}=\left[\begin{array}{lll}
-1 & -1 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

It is obvious that the cost function $c^{\top} t$ is linear, which is convex. In addition, the inequality constraints are in the form of $g_{i} \leq 0$ with convex g_{i} for $i=1$ and $i=3$. The equality constraint takes the form of $g_{2}=0$ where g_{2} is an affine function. Hence the given constrained optimization problem is convex.

