1 Problem 1

For any $z \in \mathcal{Z}$, we have:

$$g(y,z) \le \max_{y \in \mathcal{V}} g(y,z).$$

Next, we minimize both sides over $z \in \mathcal{Z}$, and the inequality still holds

$$\min_{z \in \mathcal{Z}} g(y, z) \le \min_{z \in \mathcal{Z}} \max_{y \in \mathcal{Y}} g(y, z).$$

The left side of the above inequality is a function of y, and the right side is a constant upper bound for the left side over all y. Therefore, the maximum of the left side over y should still be upper bounded by the constant on the right side. Hence we have

$$\max_{y \in \mathcal{Y}} \min_{z \in \mathcal{Z}} g(y, z) \le \min_{z \in \mathcal{Z}} \max_{y \in \mathcal{Y}} g(y, z)$$

2 Problem 2

The original problem is equivalent to

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax - b \leq 0$,

where
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} -1 & -2 \\ 3 & 1 \\ -1 & 1 \end{bmatrix}$, and $b = \begin{bmatrix} -1 \\ 5 \\ 8 \end{bmatrix}$. To find the dual, for $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} \ge 0$, we calculate $D(\mu)$ as:

$$D(\mu) = \min_{x \in \mathbb{R}^2} c^\mathsf{T} x + \mu^\mathsf{T} (Ax - b)$$

= $\min_{x \in \mathbb{R}^2} (c^\mathsf{T} + \mu^\mathsf{T} A) x - \mu^\mathsf{T} b$
=
$$\begin{cases} -\infty & \text{if } c^\mathsf{T} + \mu^\mathsf{T} A \neq 0 \\ -\mu^\mathsf{T} b & \text{if } c^\mathsf{T} + \mu^\mathsf{T} A = 0 \end{cases}$$

Notice that $c^{\mathsf{T}} + \mu^{\mathsf{T}} A = 0$ is equivalent to $A^{\mathsf{T}} \mu = -c$. Therefore, the dual problem is:

maximize
$$-\mu^{\mathsf{T}}b$$

subject to $A^{\mathsf{T}}\mu = -c, \ \mu \ge 0.$

Specifically, the dual program is

minimize
$$\mu_1 - 5\mu_2 - 8\mu_3$$

subject to $-\mu_1 + 3\mu_2 - \mu_3 = -1,$
 $-2\mu_1 + \mu_2 + \mu_3 = -1,$
 $\mu_1 \ge 0, \ \mu_2 \ge 0, \ \mu_3 \ge 0$
(1)

One way to verify strong duality is to use the Slater's condition. For linear programming, finding a strictly feasible point for the primal problem (e.g. $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ for the above problem) does guarantee the strong duality to hold.

3 Problem 3

The Lagrangian of the problem is $L(x,\mu) = x^{\mathsf{T}}Qx + \mu^{\mathsf{T}}(Ax - b)$. Thus the Lagrangian dual function is:

$$D(\mu) = \min_{x} L(x, \mu)$$

= $\min_{x} x^{\mathsf{T}}Qx + \mu^{\mathsf{T}}(Ax - b)$
= $\min_{x} x^{\mathsf{T}}Qx + \mu^{\mathsf{T}}Ax - \mu^{\mathsf{T}}b$

Since Q is positive definite, we can just take the derivative of $L(x, \mu)$ with respect to x and set it equal to 0. Then we obtain $x = -\frac{1}{2}Q^{-1}A^{\mathsf{T}}\mu$, which leads to:

$$D(\mu) = -\frac{1}{4}\mu^{\mathsf{T}}AQ^{-1}A^{\mathsf{T}}\mu - \mu^{\mathsf{T}}b.$$

Therefore, the dual problem is:

maximize
$$-\frac{1}{4}\mu^{\mathsf{T}}AQ^{-1}A^{\mathsf{T}}\mu - \mu^{\mathsf{T}}b$$

4 Problem 4

Let \bar{x} be a limit point of $\{x^{(k)}\}$ given by

$$\bar{x} = \min_{k \to \infty, k \in \mathcal{K}} x^{(k)}$$

Assuming that $\min_{h(x)=0} f(x) = f^*$ exists, then we have:

$$f^* = \min_{h(x)=0} f(x)$$

= $\min_{h(x)=0} f(x) + \lambda^{\mathsf{T}} h(x) + c_k ||h(x)||^2$
 $\geq \min f(x) + \lambda^{\mathsf{T}} h(x) + c_k ||h(x)||^2$
= $f(x^{(k)}) + \lambda^{\mathsf{T}} h(x^{(k)}) + c_k ||h(x^{(k)})||^2$

This implies that

$$c_{k} \|h(x^{(k)})\|^{2} + \lambda^{\mathsf{T}} h(x^{(k)}) \leq f^{*} - f(x^{(k)})$$

$$\Rightarrow c_{k} \|h(x^{(k)})\|^{2} - \|\lambda\| \|h(x^{(k)})\| \leq f^{*} - f(x^{(k)})$$

$$\Rightarrow -\|\lambda\| \|h(x^{(k)})\| \leq f^{*} - f(x^{(k)}), \qquad (2)$$

where the second step applies Cauchy–Schwarz inequality. By continuity of f, we have $\lim_{k\to\infty} f(x^{(k)}) = f(\bar{x})$. Thus as $k \to \infty$, $f^* - f(x^{(k)})$ goes to $f^* - f(\bar{x})$ which is finite. Since $c_k \to \infty$ as $k \to \infty$, we get

$$\lim_{k \to \infty, k \in \mathcal{K}} \|h(x^{(k)})\| = 0.$$

By continuity of ||h(x)||, we get

$$\lim_{k \to \infty, k \in \mathcal{K}} \|h(x^{(k)})\| = \|h(\bar{x})\| = 0.$$

Taking limit as $k \to \infty, k \in \mathcal{K}$ in (2), we get

$$f^* - f(\bar{x}) \ge 0.$$

But \bar{x} satisfies $h(\bar{x}) = 0$ and so $f(\bar{x}) \ge f^*$. Hence, every limit point is a global minimum.

5 Problem 5

Yes, the given constrained optimization problem is convex. Suppose $t = \begin{bmatrix} x & y & z \end{bmatrix}^{\mathsf{T}}$ and $c = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$, then the give optimization problem is equivalent to:

minimize
$$c^{\mathsf{T}}t$$

subject to $g_1 \leq 0$,
 $g_2 = 0$,
 $g_3 \leq 0$

where

$$g_{1} = c_{1}^{\mathsf{T}}t, \ c_{1} = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}^{\mathsf{T}},$$

$$g_{2} = c_{2}^{\mathsf{T}}t - 10, \ c_{2} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}},$$

$$g_{3} = t^{\mathsf{T}}Qt + c_{3}^{\mathsf{T}}t, \ Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \succeq 0, c_{3} = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$$

It is obvious that the cost function $c^{\mathsf{T}}t$ is linear, which is convex. In addition, the inequality constraints are in the form of $g_i \leq 0$ with convex g_i for i = 1 and i = 3. The equality constraint takes the form of $g_2 = 0$ where g_2 is an affine function. Hence the given constrained optimization problem is convex.