
SOLUTIONS HW 6

1 Problem 1
For any z ∈ Z, we have:

g(y, z) ≤ max
y∈Y

g(y, z).

Next, we minimize both sides over z ∈ Z, and the inequality still holds

min
z∈Z

g(y, z) ≤ min
z∈Z

max
y∈Y

g(y, z).

The left side of the above inequality is a function of y, and the right side is a constant upper bound for the
left side over all y. Therefore, the maximum of the left side over y should still be upper bounded by the
constant on the right side. Hence we have

max
y∈Y

min
z∈Z

g(y, z) ≤ min
z∈Z

max
y∈Y

g(y, z).

2 Problem 2
The original problem is equivalent to

minimize cTx

subject to Ax − b ≤ 0,

where x =
[
x1
x2

]
, c =

[
1
1

]
, A =

−1 −2
3 1

−1 1

, and b =

−1
5
8

. To find the dual, for µ =

µ1
µ2
µ3

 ≥ 0, we calculate

D(µ) as:

D(µ) = min
x∈R2

cTx + µT(Ax − b)

= min
x∈R2

(cT + µTA)x − µTb

=
{

−∞ if cT + µTA ̸= 0
−µTb if cT + µTA = 0.

Notice that cT + µTA = 0 is equivalent to ATµ = −c. Therefore, the dual problem is:

maximize − µTb

subject to ATµ = −c, µ ≥ 0.

Specifically, the dual program is

minimize µ1 − 5µ2 − 8µ3

subject to − µ1 + 3µ2 − µ3 = −1,

− 2µ1 + µ2 + µ3 = −1,

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

(1)

One way to verify strong duality is to use the Slater’s condition. For linear programming, finding a
strictly feasible point for the primal problem (e.g. x =

[
1 1

]T for the above problem) does guarantee the
strong duality to hold.
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3 Problem 3
The Lagrangian of the problem is L(x, µ) = xTQx + µT(Ax − b). Thus the Lagrangian dual function is:

D(µ) = min
x

L(x, µ)

= min
x

xTQx + µT(Ax − b)

= min
x

xTQx + µTAx − µTb.

Since Q is positive definite, we can just take the derivative of L(x, µ) with respect to x and set it equal to
0. Then we obtain x = − 1

2 Q−1ATµ, which leads to:

D(µ) = −1
4µTAQ−1ATµ − µTb.

Therefore, the dual problem is:

maximize − 1
4µTAQ−1ATµ − µTb

4 Problem 4
Let x̄ be a limit point of {x(k)} given by

x̄ = min
k→∞,k∈K

x(k).

Assuming that minh(x)=0 f(x) = f∗ exists, then we have:

f∗ = min
h(x)=0

f(x)

= min
h(x)=0

f(x) + λTh(x) + ck∥h(x)∥2

≥ min f(x) + λTh(x) + ck∥h(x)∥2

= f(x(k)) + λTh(x(k)) + ck∥h(x(k))∥2.

This implies that

ck∥h(x(k))∥2 + λTh(x(k)) ≤ f∗ − f(x(k))
⇒ ck∥h(x(k))∥2 − ∥λ∥∥h(x(k))∥ ≤ f∗ − f(x(k))

⇒ −∥λ∥∥h(x(k))∥ ≤ f∗ − f(x(k)), (2)

where the second step applies Cauchy–Schwarz inequality. By continuity of f , we have limk→∞ f(x(k)) =
f(x̄). Thus as k → ∞ , f∗ − f(x(k)) goes to f∗ − f(x̄) which is finite. Since ck → ∞ as k → ∞, we get

lim
k→∞,k∈K

∥h(x(k))∥ = 0.

By continuity of ∥h(x)∥, we get
lim

k→∞,k∈K
∥h(x(k))∥ = ∥h(x̄)∥ = 0.

Taking limit as k → ∞, k ∈ K in (2), we get

f∗ − f(x̄) ≥ 0.

But x̄ satisfies h(x̄) = 0 and so f(x̄) ≥ f∗. Hence, every limit point is a global minimum.
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5 Problem 5
Yes, the given constrained optimization problem is convex. Suppose t =

[
x y z

]T and c =
[
1 1 0

]T,
then the give optimization problem is equivalent to:

minimize cTt

subject to g1 ≤ 0,

g2 = 0,

g3 ≤ 0

where

g1 = cT
1 t, c1 =

[
0 0 −1

]T
,

g2 = cT
2 t − 10, c2 =

[
1 0 1

]T
,

g3 = tTQt + cT
3 t, Q =

0 0 0
0 0 0
0 0 1

 ⪰ 0, c3 =
[
−1 −1 0

]T

It is obvious that the cost function cTt is linear, which is convex. In addition, the inequality constraints are
in the form of gi ≤ 0 with convex gi for i = 1 and i = 3. The equality constraint takes the form of g2 = 0
where g2 is an affine function. Hence the given constrained optimization problem is convex.
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