
SOLUTIONS HW 7

1 Problem 1
(a)

g is a subgradient of f at x

⇐⇒ f(y) ≥ f(x) + gT(y − x), ∀ y ∈ Rn

⇐⇒ af(y) ≥ af(x) + agT(y − x), ∀ y ∈ Rn, a > 0
⇐⇒ ag is a subgradient of af at x.

(b) If g1 is a subgradient of f1 and g2 is a subgradient of f2 at x, then

f1(y) ≥ f1(x) + gT
1 (y − x), ∀ y ∈ Rn

f2(y) ≥ f2(x) + gT
2 (y − x), ∀ y ∈ Rn

⇒ f1(y) + f2(y) ≥ f1(x) + f2(x) + (g1 + g2)T(y − x), ∀ y ∈ Rn,

which implies that g1 + g2 is a subgradient of f1 + f2 at x.

(c)

g is a subgradient of f at Ax + b

⇐⇒ f(y) ≥ f(Ax + b) + gT(y − (Ax + b)), ∀ y ∈ Rn

⇐⇒ f(Ay + b) ≥ f(Ax + b) + gT(Ay + b − (Ax + b)), ∀ y ∈ Rn, (since A is invertible)
⇐⇒ h(y) ≥ h(x) + (ATg)T(y − x), ∀ y ∈ Rn, (here h(y) = f(Ay + b))
⇐⇒ ATg is a subgradient of h at x.

2 Problem 2
Inspired by the 1-D case, we can conjecture that the subdifferential of f(x) = |x1|+|x2|+|x3| at (x1, x2, x3) =
(0, 0, 0) is: ∂f(0, 0, 0) = {(s1, s2, s3) ∈ R3 : |s1| ≤ 1, |s2| ≤ 1, |s3| ≤ 1}.

Now we provide a proof. First, let’s prove that for any (s1, s2, s3) satisfying |s1| ≤ 1, |s2| ≤ 1, |s3| ≤ 1,
the following inequality holds for all (x1, x2, x3) ∈ R3:

|x1| + |x2| + |x3| ≥ s1x1 + s2x2 + s3x3.

For any (x1, x2, x3) ∈ R3, we have |x1| + |x2| + |x3| ≥ |s1x1| + |s2x2| + |s3x3| ≥ s1x1 + s2x2 + s3x3 due to
the fact |s1| ≤ 1, |s2| ≤ 1, and |s3| ≤ 1. Thus, any (s1, s2, s3) with |s1| ≤ 1, |s2| ≤ 1, |s3| ≤ 1 is a subgradient
and hence belongs to ∂f(0, 0, 0).

Now, let’s prove the converse statement that for any (s1, s2, s3) ∈ ∂f(0, 0, 0), we must have |s1| ≤
1, |s2| ≤ 1, and |s3| ≤ 1. By the definition of the subdifferential, for all (x1, x2, x3) ∈ R3, we have
|x1|+ |x2|+ |x3| ≥ s1x1 +s2x2 +s3x3. Taking (x1, x2, x3) = (1, 0, 0), we get 1 ≥ s1, and hence s1 ≤ 1. Taking
(x1, x2, x3) = (−1, 0, 0), we get 1 ≥ −s1 and hence s1 ≥ −1 Therefore, |s1| ≤ 1. Similarly, we can show that
|s2| ≤ 1 by choosing (x1, x2, x3) = (0, 1, 0) and (x1, x2, x3) = (0, −1, 0). We can further show |s3| ≤ 1 by
choosing (x1, x2, x3) = (0, 0, 1) and (x1, x2, x3) = (0, 0, −1). Therefore, for any (s1, s2, s3) ∈ ∂f(0, 0, 0), we
must have |s1| ≤ 1, |s2| ≤ 1, and |s3| ≤ 1.

Finally, we can conclude ∂f(0, 0, 0) = {(s1, s2, s3) ∈ R3 : |s1| ≤ 1, |s2| ≤ 1, |s3| ≤ 1}.
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3 Problem 3
Yes, the method always converges to the global minimum solution. We only need to verify three assumptions.
First, the function f(x) = |x1|+ |x2|+ |x3| is a convex function (by the triangle inequality property). Second,
the global minimum of f exists and can be attained by the point (0, 0, 0). Finally, the norm of the subgradient
of f is always upper bounded by 1. Therefore, all the three assumptions in our lecture note are satisfied, and
the subgradient method with αk = 1√

k+1 always converges to the global minimum at the rate O
(

log(N)√
N

)
.
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