1 Problem 1

(a)

g is a subgradient of f at x $\iff f(y) \ge f(x) + g^{\mathsf{T}}(y-x), \ \forall \ y \in \mathbb{R}^{n}$ $\iff af(y) \ge af(x) + ag^{\mathsf{T}}(y-x), \ \forall \ y \in \mathbb{R}^{n}, \ a > 0$ $\iff ag \text{ is a subgradient of } af \text{ at } x.$

(b) If g_1 is a subgradient of f_1 and g_2 is a subgradient of f_2 at x, then

$$f_1(y) \ge f_1(x) + g_1^{\mathsf{T}}(y - x), \ \forall \ y \in \mathbb{R}^n$$

$$f_2(y) \ge f_2(x) + g_2^{\mathsf{T}}(y - x), \ \forall \ y \in \mathbb{R}^n$$

$$\Rightarrow \ f_1(y) + f_2(y) \ge f_1(x) + f_2(x) + (g_1 + g_2)^{\mathsf{T}}(y - x), \ \forall \ y \in \mathbb{R}^n,$$

which implies that $g_1 + g_2$ is a subgradient of $f_1 + f_2$ at x.

(c)

$$g \text{ is a subgradient of } f \text{ at } Ax + b$$

$$\iff f(y) \ge f(Ax + b) + g^{\mathsf{T}}(y - (Ax + b)), \quad \forall \ y \in \mathbb{R}^{n}$$

$$\iff f(Ay + b) \ge f(Ax + b) + g^{\mathsf{T}}(Ay + b - (Ax + b)), \quad \forall \ y \in \mathbb{R}^{n}, \text{ (since } A \text{ is invertible)}$$

$$\iff h(y) \ge h(x) + (A^{\mathsf{T}}g)^{\mathsf{T}}(y - x), \quad \forall \ y \in \mathbb{R}^{n}, \text{ (here } h(y) = f(Ay + b))$$

$$\iff A^{\mathsf{T}}g \text{ is a subgradient of } h \text{ at } x.$$

2 Problem 2

Inspired by the 1-D case, we can conjecture that the subdifferential of $f(x) = |x_1| + |x_2| + |x_3|$ at $(x_1, x_2, x_3) = (0, 0, 0)$ is: $\partial f(0, 0, 0) = \{(s_1, s_2, s_3) \in \mathbb{R}^3 : |s_1| \le 1, |s_2| \le 1, |s_3| \le 1\}.$

Now we provide a proof. First, let's prove that for any (s_1, s_2, s_3) satisfying $|s_1| \le 1, |s_2| \le 1, |s_3| \le 1$, the following inequality holds for all $(x_1, x_2, x_3) \in \mathbb{R}^3$:

 $|x_1| + |x_2| + |x_3| \ge s_1 x_1 + s_2 x_2 + s_3 x_3.$

For any $(x_1, x_2, x_3) \in \mathbb{R}^3$, we have $|x_1| + |x_2| + |x_3| \ge |s_1x_1| + |s_2x_2| + |s_3x_3| \ge s_1x_1 + s_2x_2 + s_3x_3$ due to the fact $|s_1| \le 1$, $|s_2| \le 1$, and $|s_3| \le 1$. Thus, any (s_1, s_2, s_3) with $|s_1| \le 1$, $|s_2| \le 1$, $|s_3| \le 1$ is a subgradient and hence belongs to $\partial f(0, 0, 0)$.

Now, let's prove the converse statement that for any $(s_1, s_2, s_3) \in \partial f(0, 0, 0)$, we must have $|s_1| \leq 1$, $|s_2| \leq 1$, and $|s_3| \leq 1$. By the definition of the subdifferential, for all $(x_1, x_2, x_3) \in \mathbb{R}^3$, we have $|x_1| + |x_2| + |x_3| \geq s_1 x_1 + s_2 x_2 + s_3 x_3$. Taking $(x_1, x_2, x_3) = (1, 0, 0)$, we get $1 \geq s_1$, and hence $s_1 \leq 1$. Taking $(x_1, x_2, x_3) = (-1, 0, 0)$, we get $1 \geq -s_1$ and hence $s_1 \geq -1$ Therefore, $|s_1| \leq 1$. Similarly, we can show that $|s_2| \leq 1$ by choosing $(x_1, x_2, x_3) = (0, 1, 0)$ and $(x_1, x_2, x_3) = (0, -1, 0)$. We can further show $|s_3| \leq 1$ by choosing $(x_1, x_2, x_3) = (0, 0, 1)$ and $(x_1, x_2, x_3) = (0, 0, -1)$. Therefore, for any $(s_1, s_2, s_3) \in \partial f(0, 0, 0)$, we must have $|s_1| \leq 1$, $|s_2| \leq 1$, and $|s_3| \leq 1$.

Finally, we can conclude $\partial f(0,0,0) = \{(s_1, s_2, s_3) \in \mathbb{R}^3 : |s_1| \le 1, |s_2| \le 1, |s_3| \le 1\}.$

3 Problem 3

Yes, the method always converges to the global minimum solution. We only need to verify three assumptions. First, the function $f(x) = |x_1| + |x_2| + |x_3|$ is a convex function (by the triangle inequality property). Second, the global minimum of f exists and can be attained by the point (0, 0, 0). Finally, the norm of the subgradient of f is always upper bounded by 1. Therefore, all the three assumptions in our lecture note are satisfied, and the subgradient method with $\alpha_k = \frac{1}{\sqrt{k+1}}$ always converges to the global minimum at the rate $O\left(\frac{\log(N)}{\sqrt{N}}\right)$.