## SOLUTIONS HW 7

## 1 Problem 1

(a)
$g$ is a subgradient of $f$ at $x$
$\Longleftrightarrow f(y) \geq f(x)+g^{\top}(y-x), \quad \forall y \in \mathbb{R}^{n}$
$\Longleftrightarrow a f(y) \geq a f(x)+a g^{\top}(y-x), \quad \forall y \in \mathbb{R}^{n}, a>0$
$\Longleftrightarrow a g$ is a subgradient of $a f$ at $x$.
(b) If $g_{1}$ is a subgradient of $f_{1}$ and $g_{2}$ is a subgradient of $f_{2}$ at $x$, then

$$
\begin{aligned}
f_{1}(y) & \geq f_{1}(x)+g_{1}^{\top}(y-x), \forall y \in \mathbb{R}^{n} \\
f_{2}(y) & \geq f_{2}(x)+g_{2}^{\top}(y-x), \forall y \in \mathbb{R}^{n} \\
\Rightarrow \quad f_{1}(y)+f_{2}(y) & \geq f_{1}(x)+f_{2}(x)+\left(g_{1}+g_{2}\right)^{\top}(y-x), \quad \forall y \in \mathbb{R}^{n},
\end{aligned}
$$

which implies that $g_{1}+g_{2}$ is a subgradient of $f_{1}+f_{2}$ at $x$.
(c)
$g$ is a subgradient of $f$ at $A x+b$
$\Longleftrightarrow f(y) \geq f(A x+b)+g^{\top}(y-(A x+b)), \quad \forall y \in \mathbb{R}^{n}$
$\Longleftrightarrow f(A y+b) \geq f(A x+b)+g^{\top}(A y+b-(A x+b)), \quad \forall y \in \mathbb{R}^{n}, \quad$ (since $A$ is invertible)
$\Longleftrightarrow h(y) \geq h(x)+\left(A^{\top} g\right)^{\top}(y-x), \forall y \in \mathbb{R}^{n},($ here $h(y)=f(A y+b))$
$\Longleftrightarrow A^{\top} g$ is a subgradient of $h$ at $x$.

## 2 Problem 2

Inspired by the 1-D case, we can conjecture that the subdifferential of $f(x)=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|$ at $\left(x_{1}, x_{2}, x_{3}\right)=$ $(0,0,0)$ is: $\partial f(0,0,0)=\left\{\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}:\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1,\left|s_{3}\right| \leq 1\right\}$.

Now we provide a proof. First, let's prove that for any $\left(s_{1}, s_{2}, s_{3}\right)$ satisfying $\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1,\left|s_{3}\right| \leq 1$, the following inequality holds for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ :

$$
\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \geq s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}
$$

For any $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, we have $\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \geq\left|s_{1} x_{1}\right|+\left|s_{2} x_{2}\right|+\left|s_{3} x_{3}\right| \geq s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}$ due to the fact $\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1$, and $\left|s_{3}\right| \leq 1$. Thus, any $\left(s_{1}, s_{2}, s_{3}\right)$ with $\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1,\left|s_{3}\right| \leq 1$ is a subgradient and hence belongs to $\partial f(0,0,0)$.

Now, let's prove the converse statement that for any $\left(s_{1}, s_{2}, s_{3}\right) \in \partial f(0,0,0)$, we must have $\left|s_{1}\right| \leq$ $1,\left|s_{2}\right| \leq 1$, and $\left|s_{3}\right| \leq 1$. By the definition of the subdifferential, for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, we have $\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \geq s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}$. Taking $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$, we get $1 \geq s_{1}$, and hence $s_{1} \leq 1$. Taking $\left(x_{1}, x_{2}, x_{3}\right)=(-1,0,0)$, we get $1 \geq-s_{1}$ and hence $s_{1} \geq-1$ Therefore, $\left|s_{1}\right| \leq 1$. Similarly, we can show that $\left|s_{2}\right| \leq 1$ by choosing $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ and $\left(x_{1}, x_{2}, x_{3}\right)=(0,-1,0)$. We can further show $\left|s_{3}\right| \leq 1$ by choosing $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,1)$ and $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,-1)$. Therefore, for any $\left(s_{1}, s_{2}, s_{3}\right) \in \partial f(0,0,0)$, we must have $\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1$, and $\left|s_{3}\right| \leq 1$.

Finally, we can conclude $\partial f(0,0,0)=\left\{\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}:\left|s_{1}\right| \leq 1,\left|s_{2}\right| \leq 1,\left|s_{3}\right| \leq 1\right\}$.

## 3 Problem 3

Yes, the method always converges to the global minimum solution. We only need to verify three assumptions. First, the function $f(x)=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|$ is a convex function (by the triangle inequality property). Second, the global minimum of $f$ exists and can be attained by the point $(0,0,0)$. Finally, the norm of the subgradient of $f$ is always upper bounded by 1 . Therefore, all the three assumptions in our lecture note are satisfied, and the subgradient method with $\alpha_{k}=\frac{1}{\sqrt{k+1}}$ always converges to the global minimum at the rate $O\left(\frac{\log (N)}{\sqrt{N}}\right)$.

