ECE 490 (Introduction to Optimization) – A Practice Problem

Problem 1. Define $f : \mathbb{R}^2 \to \mathbb{R}$ as

$$f(x_1, x_2) = x_1^2 + 2\frac{1-\epsilon}{1+\epsilon}x_1x_2 + x_2^2$$

with $0 < \epsilon < 1$. Now, we consider the minimization problem of f, i.e. $\min_{x_1, x_2} f(x_1, x_2)$.

- (a) What are the minimizers of f?
- (b) Find the largest m > 0 and the smallest M > 0 in terms of ϵ such that

$$mI \preceq \nabla^2 f(x_1, x_2) \preceq MI$$

for all (x_1, x_2) , where I is the identity matrix. Find the condition number of $\nabla^2 f$ given by $\kappa := \frac{M}{m}$ in terms of ϵ .

(c) How does κ change as ϵ decreases to 0. Do you expect gradient descent to converge faster or slower as ϵ decreases to 0?