ECE 490 (Introduction to Optimization) - A Practice Problem

Problem 1. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 \frac{1-\epsilon}{1+\epsilon} x_{1} x_{2}+x_{2}^{2}
$$

with $0<\epsilon<1$. Now, we consider the minimization problem of f, i.e. $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$.
(a) What are the minimizers of f ?
(b) Find the largest $m>0$ and the smallest $M>0$ in terms of ϵ such that

$$
m I \preceq \nabla^{2} f\left(x_{1}, x_{2}\right) \preceq M I
$$

for all $\left(x_{1}, x_{2}\right)$, where I is the identity matrix. Find the condition number of $\nabla^{2} f$ given by $\kappa:=\frac{M}{m}$ in terms of ϵ.
(c) How does κ change as ϵ decreases to 0 . Do you expect gradient descent to converge faster or slower as ϵ decreases to 0 ?

