## SOLUTIONS

## 1 Problem 1

1. We have

$$
\nabla f=\left[2 x_{1}+2 \frac{1-\epsilon}{1+\epsilon} x_{2}, 2 x_{2}+2 \frac{1-\epsilon}{1+\epsilon} x_{1}\right]^{T}, \quad \text { and } \quad \nabla^{2} f=\left(\begin{array}{cc}
2 & 2 \frac{1-\epsilon}{1+\epsilon}  \tag{1}\\
2 \frac{1-\epsilon}{1+\epsilon} & 2
\end{array}\right)
$$

Since $0<(1-\epsilon) /(1+\epsilon)<1$ we have $\nabla^{2} f \succ 0$, the unique minimizer is the solution of $\nabla f=0$ which is $x_{1}=x_{2}=0$.
2. We must have

$$
\left(\begin{array}{cc}
2-m & 2 \frac{1-\epsilon}{1+\epsilon}  \tag{2}\\
2 \frac{1-\epsilon}{1+\epsilon} & 2-m
\end{array}\right) \succeq 0, \quad\left(\begin{array}{cc}
M-2 & -2 \frac{1-\epsilon}{1+\epsilon} \\
-2 \frac{1-\epsilon}{1+\epsilon} & M-2
\end{array}\right) \succeq 0
$$

or equivalently

$$
\begin{equation*}
2-m \geq 0, \quad(2-m)^{2}-\left(2 \frac{1-\epsilon}{1+\epsilon}\right)^{2} \geq 0 \quad \text { and } \quad M-2 \geq 0, \quad(M-2)^{2}-\left(2 \frac{1-\epsilon}{1+\epsilon}\right)^{2} \geq 0 \tag{3}
\end{equation*}
$$

The largest possible $m$ is $2-2 \frac{1-\epsilon}{1+\epsilon}$ and the smallest possible $M$ is $2+2 \frac{1-\epsilon}{1+\epsilon}$. Hence, $\kappa=M / m=1 / \epsilon$
3. As $\epsilon \rightarrow 0$, it holds $\kappa=1 / \epsilon \rightarrow \infty$. Thus, we should expect gradient descent to converge slower.

