
ECE586RL: MDPs and Reinforcement Learning Spring 2020

Homework 1

Instructor: Bin Hu Due date: March 11, 2020

1.Markov Chains. (20 points in total, 10 points for each subproblem)
(a) Consider Markov chains on a finite state space S = {1, 2, 3, 4}. Consider the following

three different transition matrices.

P1 =


0 0 1 0
0 0.2 0 0.8

0.1 0.2 0.7 0
0 0 0.1 0.9

 , P2 =


0.3 0.7 0 0
0.4 0.6 0 0
0 0 0.8 0.2
0 0 0.5 0.5

 , P3 =


0 0 0.3 0.7
0 0 0.4 0.6

0.8 0.2 0 0
0.5 0.5 0 0


For the above three cases, answer i) Is the chain irreducible? ii) Is the chain aperiodic? (iii)
Does the chain have a unique stationary distribution? (iv) Does the chain always converge
to its stationary distribution?

(b) Consider a dynamical system xk+1 = Axk +wk where wk is sampled from a Gaussian
distribution (wk ∼ N (0,W )) in an IID manner. (i) Suppose xk has been observed and
is known, what is the probability distribution of xk+1? Write out its probability density
function. (ii) Given the mean and covariance of xk, are the mean and covariance of xk+1

completely determined? If so, write down the formulas for the mean and covariance of xk+1.

2. MDPs on Finite State Space (20 points in total, 5 points for each subproblem)
Consider a finite state MDP 〈S,A, P, c, γ〉. Suppose the state takes value on the set

{1, 2, . . . , n} and the action takes value on the set {a1, a2}.

(a) Consider a stochastic policy that takes the action a1 with probability 0.6 for any
state. In other words, the policy selects the action a2 with probability 0.4 for any state.
Suppose the transition matrix is know. How to evaluate the state value function for this
policy? How to evaluate the state-action value function for this policy? How about the cases
where the transition matrix is not known? Provide one method here.

(b) Suppose we use the policy in (a) as our behavior policy and apply Q-learning to solve
the above MDP. What is the update rule here? What is the size for the Q table?

(c) Now suppose we want to apply SARSA. What is the difference between SARSA and
Q-learning?
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(d) Suppose we apply the value iteration algorithm to find the optimal Q-function. Your
task is to use the contraction mapping theorem to prove the convergence of the VI algorithm.
(Hint: First prove that the Bellman operator for Q-factor is a contraction mapping.)

3. Linear Quadratic Regulator (20 points in total, 5 points for each subproblem)
Consider the linear time-invariant system

xk+1 = Axk +Buk + wk

where xk is the state, uk is the control action, and the process noise wk is sampled from a
Gaussian distribution in an IID manner, i.e. wk ∼ N (0,W ). The objective is to choose uk
to minimize the following cost

C =
∞∑
k=0

γkE(xTkQxk + uTkRuk)

where 0 < γ < 1 is the discounting factor. The matrices Q and R are positive definite.

(a) Policy evaluation: Suppose we are using a linear policy uk = −Kxk. How to calculate
the state value function CK(x) = E

[∑∞
k=0 γ

k(xTkQxk + uTkRuk)
∣∣x0 = x

]
? How to calculate

the state-action value function QK(x, u) = E
[∑∞

k=0 γ
k(xTkQxk + uTkRuk)

∣∣x0 = x, u0 = u
]
?

Derive the Bellman equations for both cases.

(b) Optimal Bellman equation: We define the optimal state value function as C∗(x) =
minπ Cπ(x). How to calculate C∗? What is the optimal state-action value function Q∗ here?

(c) Approximate Policy Iteration: Write out the policy iteration algorithm for the above
problem. In the policy evaluation step, how to estimate QK from sample trajectories of
{xk, uk}? Provide at least two algorithms for that. Write out the specific update rules for
the algorithms you provide.

(d) Q-learning and SARSA: write out the update rules for Q-learning and SARSA when
applied to the above LQR problem. What is the main difference?

4. Policy Gradient
Consider a nonlinear system xk+1 = f(xk, uk, wk) where xk is the state, uk is the action,

and wk is the process noised sampled from an IID Gaussian distribution. The objective is
to choose uk to minimize the cost

C = E
∞∑
k=0

γkc(xk, uk) (1)
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where 0 < γ < 1 is the discounting factor. Suppose f is unknown, and we want to learn
policy from sampled trajectories of (xk, uk).

(a) Based on the policy gradient theorem, we can estimate the policy gradient as

∇C(θ) = E
∞∑
t=0

[γtΨt∇θ log πθ(ut|xt)] (2)

where θ parameterizes the stochastic policy. Many options for Ψt are available. Provide three
such options. If we use a linear Gaussian policy, i.e. ut ∼ N (−Kx, σI), how to estimate
the policy gradient? (Write out an explicit formula for log πθ(ut|xt) and substitute it into
the gradient formula.) If we use a two-layer neural network to parameterize the Gaussian
policy, i.e. ut ∼ N (W 1h(W 0xt), σI) where h is the elementwise activation, how to estimate
the policy gradient?

(b) When using the policy gradient theorem, we inject noise into the control actions for
exploration purposes. Suppose now we want to directly learn a deterministic policy using
evolution strategies which are based on the following estimation of the policy gradient:

∇C(K) ≈
Eε∼N (0,σ2I)C(K + ε)ε

σ2

To understand this update rule, we analyze a shifted variant of the above update:

g =
Eε∼N (0,σ2I)(C(K + ε)− C(K))ε

σ2
=

Eε∼N (0,I)(C(K + σε)− C(K))ε

σ

Roughly speaking, the above estimation shifts the original zeroth-order gradient estimate
with a zero mean vector and should not change the mean of the gradient estimator. Your
task is to apply the fact limσ→0

C(K+σε)−C(K)
σ

= (∇C(K))Tε to show the following equation:

Eε∼N (0,I)

(
lim
σ→0

C(K + σε)− C(K)

σ

)
ε = ∇C(K)

(Remark: Now you can see σ serves as a stepsize for the stochastic finite difference estimation.
In the setting of data-driven control, typically we only have samples of C. Choosing σ to be
too small can amplify this error, and hence one has to tune σ carefully.)

5. Implementation Assignment (20 points in total, 10 points for each subproblem)
In this problem, you are asked to implement codes for a LQR example with the following

parameters

A =

0.99 0.01 0
0.01 0.98 0.01
0.5 0.12 0.97

 , B =

1 0.1
0 0.1
0 0.1

 , Q =

1 0 0
0 1 0
0 0 1

 , R =

[
1 0
0 1

]
,W =

0.1 0 0
0 0.05 0
0 0 0.1

 .
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Here W is the covariance matrix of the process noise which is sampled from zero mean
Gaussian process. We fix the discounting factor as γ = 0.98.

(a) Model-based policy evaluation: Consider a policy uk = −Kxk withK =

[
0 0.1 0

0.1 0 0.1

]
.

First, calculate the state-action value function using the information of (A,B,Q,R,W ). You
are allowed to use the matlab function dlyap. Or you can use any language to implement a
code that solves the LQR Bellman equation for the Q factor.

(b) Model-free policy evaluation: Still consider the same policy. Now suppose you don’t
know (A,B,W ). You can only access the sample trajectories. Implement TD learning (pick
your favorite algorithm from TD(0), TD(λ), or LSTD) to estimate the Q function. Does the
algorithm work? Discuss your finding.

(c) Bonus problem (extra 5 points): Implement the approximate PI algorithm to obtain
the optimal policy for the above LQR problem. You can initialize the algorithm using the
policy in (a). For the policy evaluation step, choose your favorite TD algorithm.

1-4


