
ECE586RL: MDPs and Reinforcement Learning

A Note on Linear Quadratic Regulator

Instructor: Bin Hu

March 16, 2020

In this note, we review some basic facts related to the linear quadratic regulator (LQR) which
is used as a benchmark problem for reinforcement learning.

1 LQR without Process Noise

We start from a simple setup. Consider the following linear dynamical system

xt+1 = Axt +But (1.1)

where A is the state matrix, B is the input matrix, ut is the control action, and xt is the system
state. In the class, we start with the case where there is a stochastic process noise wt in the
dynamics. For simplicity, here we start with the case where there is no process noise wt.

The objective is to choose {ut} to minimize the following cost

C = Ex0∼D
∞∑
t=0

(xTt Qxt + uTt Rut) (1.2)

where Q and R are positive definite matrices. Since there is no process noise, the only randomness
stems from the randomness in x0. So there is an initial distribution D where x0 is sampled from.
The choices of Q and R reflect the conflicting design objectives in control: We want to achieve
small tracking error by using small control inputs. The above setup is a little different from the
discounting setup covered in the class. One main difference is that there is no discounting factor in
the cost (1.2). Since there is no process noise wt, we do not need a discounting factor γ to make C
finite. When there is the process noise term wt, the cost in (1.2) is never finite for γ = 1 due to the
fact that xt does not converge to 0. In that case, a discounting factor is needed. Nevertheless, the
above LQR problem can still be viewed as a MDP on a continuous state space. A few key features
are summarized as follows.

1. Continuous state space: xt is a real vector and hence can take any values in Rx.

2. Continuous action space: ut is also a real vector.

3. Transition dynamics: Given xt and ut, then xt+1 is also known due to (1.1). The transition
dynamics can be viewed a stochastic kernel centering at (Axt +But) with probability 1 .

1

4. Additive structure of cost function: C is a sum of cost values at different t. The one-step cost
depends on both the state and the input at that step.

5. No discounting factor in cost C.

Given an initial condition x0, we denote the state value function as V (x0) =
∑∞

t=0(x
T
t Qxt+u

T
t Rut).

Therefore, we have C = Ex∼DV (x).

1.1 Policy Parameterization

As discussed in the class, it is reasonable to design ut using the past information of the system.
This type of closed-loop design is more robust to disturbance and model uncertainty. When the
state xt can be measured, it is reasonable to just consider the stationary policy in the form of state
feedback, i.e. ut = µ(xt). For the finite state space case, µ can be represented as a table. Here, µ
is a function mapping from Rx to Ru. We want to design µ to minimize C. In practice, we have to
confine the search of µ within certain tractable classes of functions. Here are a few examples.

1. Linear policy: µ is parameterized by a matrix K, and we have xt = −Kut. Eventually the
problem becomes finding K to minimize C.

2. Neural network: µ can be parameterized by a neural network, i.e. ut = WLφ(WL−1 . . .W2φ(W1xt))
where L is the depth of the network. This is a more popular choice for complex nonlinear
control tasks. Then the problem becomes minimizing C over the weights (W1,W2, . . . ,WL).

1.2 Policy Evaluation

Notice the cost (1.2) provides a measure for the performance of the policy µ. The smaller the cost
C is, the better the policy µ performs. Policy evaluation refers to the calculation of C for a given
policy µ.

Stability issue. Unlike the finite state space case, C may not be finite for a given µ. So there is
a stability issue here. If µ stabilizes the system (1.1), then the cost (1.2) is finite.

Parameterization of value function In this note, we focus the policy evaluation for a linear
policy ut = −Kxt. Substituting ut = −Kxt into (1.1) leads to xt+1 = (A−BK)xt. Hence we have

xt = (A−BK)tx0 (1.3)

We denote the spectral radius as ρ. If K stabilizes the system (1.1), then ρ(A − BK) < 1 and
xt → 0 at a geometric rate. The cost (1.2) can be rewritten as

C(K) = Ex0∼D xT0

(∞∑
t=0

((A−BK)T)t(Q+KTRK)(A−BK)t

)
x0 (1.4)

When ρ(A − BK) ≥ 1, the above cost blows up to infinity. It makes sense to restrict the policy
search within the class of stabilizing K. When ρ(A−BK) < 1, we know

∑∞
t=0((A−BK)T)t(Q+

KTRK)(A−BK)t will converge to a fixed constant matrix. We denote this matrix by PK . There-
fore, it is reasonable to parameterize the value function as x>0 PKx0 which is a quadratic function
of x0. When a nonlinear policy is used, we typically need to parameterize the value function as a
neural network.

2

Bellman equation for policy evaluation. From the above discussion, we have already known
PK =

∑∞
t=0((A−BK)T)t(Q+KTRK)(A−BK)t. The bellman equation can be derived as follows.

xT0PKx0 =
∞∑
t=0

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 +

∞∑
t=1

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 + xT1PKx1

= xT0 (Q+KTRK)x0 + xT0 (A−BK)TPK(A−BK)x0

= xT0

(
Q+KTRK + (A−BK)TPK(A−BK)

)
x0

Therefore, the Bellman equation takes the following form:

PK = Q+KTRK + (A−BK)TPK(A−BK) (1.5)

For any fixed K, the above equation is a linear equation of PK . Hence the existence and uniqueness
of the solution to the above Bellman equation can be established using linear equation theory.

To obtain a closed-form solution for PK , we need to introduce the Kronecker product and the
vectorization operation. The Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q is
denoted by A⊗B and given by:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
where aij is the (i, j)-th entry of A. Clearly, we have A⊗B ∈ Rpm×qn. Notice (A⊗B)T = AT ⊗BT

and (A⊗B)(C ⊗D) = (AC)⊗ (BD) when the matrices have compatible dimensions.
Next, let vec denote the standard vectorization operation that stacks the columns of a matrix

into a vector. For example, we have

vec

1 2
3 4
5 6

 =

1
3
5
2
4
6

 .

An important fact is that we always have vec(AXB) = (BT ⊗A) vec(X). Therefore, we have

vec
(

(A−BK)TPK(A−BK)
)

=
(

(A−BK)T ⊗ (A−BK)T
)

vec(PK)

Then we can vectorize both sides of the Bellman equation (1.5) to obtain

vec(PK) = vec(Q+K>RK) +
(

(A−BK)T ⊗ (A−BK)T
)

vec(PK)

3

which can be easily solved for PK :

vec(PK) =
(
I − (A−BK)T ⊗ (A−BK)T

)−1
vec(Q+KTRK)

Now we have a closed-form solution for PK . Using properties of the Kronecker product, one can
show

(
I − (A−BK)T ⊗ (A−BK)T

)
is nonsingular under the assumption ρ(A − BK) < 1. We

skip the details here. The key message here is that for any stabilizing K, we can solve (1.5) to
obtain PK and then the value function for K is V (x) = xTPKx.

For general nonlinear policy, the existence and uniqueness conditions for Bellman equation are
much more complicated.

1.3 Optimal Bellman Equation: Riccati Equation

For the above LQR problem, the optimal Bellman equation becomes the following Riccati equation

P = ATPA+Q−ATPB(BTPB +R)−1BTPA (1.6)

When (A,B) is stabilizable, the above equation has a unique positive definite1 stabilizing solution
P such that ρ(A−B(BTPB+R)−1BTPA) < 1. Then the optimal action is given by a linear policy,
i.e. ut = −(BTPB+R)−1BTPAxt. This linear policy is optimal among all (potentially nonlinear)
policies. This can be shown using completion of square. We can rewrite the cost as follows.

∞∑
t=0

(xTt Qxt + uTt Rut) = xT0Px0 +
∞∑
t=0

(xTt Qxt + uTt Rut + xTt+1Pxt+1 − xTt Pxt)

= xT0Px0 +

∞∑
t=0

(
xTt Qxt + uTt Rut + (Axt +But)

TP (Axt +But)− xTt Pxt
)

= xT0Px0 +
∞∑
t=0

(
xTt (Q+ATPA− P)xt + uTt (R+BTPB)ut + xTt A

TPBut + uTt B
TPAxt

)
By the Riccati equation, we have Q+ATPA− P = ATPB(BTPB +R)−1BTPA. Hence we have

∞∑
t=0

(xTt Qxt + uTt Rut)

=xT0Px0 +
∞∑
t=0

(
xTt A

TPB(BTPB +R)−1BTPAxt + uTt (R+BTPB)ut + xTt A
TPBut + uTt B

TPAxt

)
=xT0Px0 +

∞∑
t=0

(
(BTPB +R)ut +BTPAxt

)T
(BTPB +R)−1

(
(BTPB +R)ut +BTPAxt

)
Notice BTPB +R is positive definite. Therefore, the cost achieves its minimal value xT0Px0 if the
action is chosen to satisfy (BTPB+R)ut+B

TPAxt = 0. We have skipped a few technical details but
the above calculation roughly explain why the optimal policy is given by K = (BTPB+R)−1BTPA.

1For simplicity, we assume Q is positive definite in this note. Hence the solution P is positive definite. In general,
it is possible to allow Q to be only positive semidefinite and the solution P can also become positive semidefinite.
Some extra observability assumption is then needed.

4

How does the Riccati equation arise? Usually one first looks at LQR on a finite horizon and
then extends the result there to the infinite horizon setup. Instead of doing that, we will provide
an alternative informal derivation that starts from the assumption that the optimal policy is linear.
Under this assumption, the optimal value function is quadratic and takes the form of xTPx. The
optimal Bellman equation states the following fact.

xTPx = min
u

(xTQx+ uTRu+ (Ax+Bu)TP (Ax+Bu)) (1.7)

Clearly, the right side is a quadratic function in u. Taking the gradient of the right hand side with
respect to u leads to the following equation:

(R+BTPB)u+BTPAx = 0

The optimal u is given as u = −(R + BTPB)−1BTPAx. We can substitute this relation to the
right side of (1.7) and obtain

P = Q+ATPB(R+BTPB)−1R(R+BTPB)−1BTPA

+
(
A−B(BTPB +R)−1BTPA

)T
P
(
A−B(BTPB +R)−1BTPA

)
Simplifying the above equation leads to the Riccati equation (1.6).

Key message. When writing out the optimal Bellman equation, we need to know how to param-
eterize the optimal value function. In the LQR problem, we know we can parameterize the optimal
value function as a quadratic function. Therefore, eventually the optimal Bellman equation (1.7)
is equivalent to an algebraic Riccati equation on P . If we just use a general value function V (x),
then (1.7) becomes

V (x) = min
u

(xTQx+ uTRu+ V (Ax+Bu)) (1.8)

How to figure out V becomes a difficult task. For nonlinear control, the situation is even worse.
Suppose the dynamics become xt+1 = f(xt, ut) and the one-stage cost is c(x, u) where c is some
complicated function. Then the optimal Bellman equation is in the following nonlinear form:

V (x) = min
u

(c(x, u) + V (f(x, u))) (1.9)

which is extremely difficult to solve. One has to approximate V using neural networks.

1.4 Value Iteration

Suppose we decide to parameterize the value function as V (x) = xTPx. The Bellman operator T
maps P to P ′ as follows

xTP ′x = min
u

(xTQx+ uTRu+ (Ax+Bu)TP (Ax+Bu)) (1.10)

Clearly, the optimal Bellman equation (1.7) is equivalent to P = T (P) and just gives the fixed
point for the above Bellman operator. Again, the right side of (1.10) is a quadratic function of u,
and minimizing over u gives

P ′ = ATPA+Q−ATPB(BTPB +R)−1BTPA (1.11)

5

Therefore, we can apply the Bellman operator recursively and obtain a value iteration algorithm:

Pn+1 = ATPnA+Q−ATPnB(BTPnB +R)−1BTPnA (1.12)

We can clearly see, for the continuous state space case, we need to parameterize the value function
and then iteratively update these parameters.

1.5 Policy Iteration

For policy iteration, we need to parameterize the policy and recursively update these policy param-
eters. Let’s say we use a linear policy K. At step n, the policy update is Kn. Then we evaluate the
value for this policy by solving the Bellman equation (A−BKn)TPn(A−BKn)+Q+(Kn)TRKn =
Pn. Once Pn is obtained, we update x = −Kn+1u by solving

arg min
u

(xTQx+ uTRu+ (Ax+Bu)TPn(Ax+Bu)) (1.13)

Minimizing the above cost over u leads to u = −(BTPnB + R)−1BTPnA, and hence we have
Kn+1 = (BTPnB+R)−1BTPnA where Pn solves (A−BKn)TPn(A−BKn)+Q+(Kn)TRKn = Pn.

Differences between PI and VI. In VI, the optimal u for (1.10) is substituted back to the
Bellman operator to obtain Pn+1. In PI, Pn+1 is solved by evaluating the value for this u (hence
we need to solve a fixed point here).

1.6 State-Action Value Function: Q-Factor

Given a fixed policy K, the state-action value function can be calculated as

Q(x, u) = x>Qx+ u>Ru+

∞∑
t=1

xTt (Q+K>RK)xt

where x1 = Ax + Bu. Notice the control actions at all steps except step k = 0 are selected as
ut = −Kxt. At k = 0, the control action is u and independent of the policy K. This initial control
action u is an input to the state-action value function.

Suppose V (x) is the state value function. Then obviously, we have

Q(x, u) = x>Qx+ u>Ru+ V (Ax+Bu) (1.14)

In addition, we also have V (x) = Q(x,−Kx). Therefore, we can substitute this into the above
equation to obtain the Bellman equation for Q:

Q(x, u) = x>Qx+ u>Ru+Q (Ax+Bu,−K(Ax+Bu))

Suppose we know Q is a quadratic function of (x, u), and we parameterize the function as[
x
u

]T [Q11 Q12

QT
12 Q22

] [
x
u

]
=

[
x
u

]T [
Q 0
0 R

] [
x
u

]
+

[
Ax+Bu

−K(Ax+Bu)

]T [Q11 Q12

QT
12 Q22

] [
Ax+Bu

−K(Ax+Bu)

]
=

[
x
u

]T [
Q 0
0 R

] [
x
u

]
+

[
x
u

]T [
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

] [
x
u

]

6

Therefore, the Bellman equation for Q-factor is just the following equation for Q11, Q12, and Q22.[
Q11 Q12

QT
12 Q22

]
=

[
Q 0
0 R

]
+

[
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

]
(1.15)

The above equation is linear in Q11, Q12, and Q22. Hence, it can be solved by linear equation
theory. We have

vec

([
Q11 Q12

QT
12 Q22

])
=

(
I −

[
A B
−KA −KB

]T
⊗
[

A B
−KA −KB

]T)−1
vec

([
Q 0
0 R

])
(1.16)

Why is the quadratic parameterization of Q-factor valid? Notice that we can obtain the Q-factor
using the value function directly. Suppose V (x) = xTPx. By (1.14), we can obtain

Q(x, u) = x>Qx+ u>Ru+ (Ax+Bu)TPK(Ax+Bu)

= x>Qx+ u>Ru+

[
x
u

]T [
ATPKA ATPKB
BTPKA BTPKB

] [
x
u

]
=

[
x
u

]T [
Q+ATPKA ATPKB
BTPKA R+BTPKB

] [
x
u

]
Therefore, for the LQR problem, we can parameterize Q-factor as a quadratic function. For general
nonlinear control problems, we need to use more general function approximators such as neural
networks.

Now it is obvious that the only solution for (1.16) is provided by[
Q11 Q12

QT
12 Q22

]
=

[
Q+ATPKA ATPKB
BTPKA R+BTPKB

]
.

One can also solve (1.16) using an iterative algorithm.

1.7 Optimal State-Action Value Function

By definition, we have Q∗(x, u) = minπQ(x, u). Now we discuss various properties of Q∗.

1. Relation between Q∗ and V ∗: For the LQR problem, the optimal state value function and
the optimal state-action value function satisfy the following equation:

Q∗(x, u) = xTQx+ uTRu+ V ∗(Ax+Bu)

Suppose the optimal state value function is V ∗(x) = xTPx where P is the stabilizing solution
for the Riccati equation (1.6). Then we can solve Q∗ by revoking its relation with V ∗:

Q∗(x, u) = xTQx+ uTRu+ (Ax+Bu)TP (Ax+Bu) (1.17)

=

[
x
u

]T [
Q+ATPA ATPB
BTPA R+BTPB

] [
x
u

]
(1.18)

7

2. Obtaining Optimal Policy from Q∗: As discussed in the class, a big advantage of the
state-action value function is that one can obtain the optimal policy from the optimal state-
action value function directly without using the model information (A,B). Suppose we have
a positive semidefinite quadratic optimal Q-function:

Q∗(x, u) =

[
x
u

]T [Q∗11 Q∗12
(Q∗12)T Q∗22

] [
x
u

]
Minimizing the above quadratic function over u gives the optimal action u∗ = −(Q∗22)−1(Q∗12)Tx.
Hence the optimal policy is K∗ = −(Q∗22)−1(Q∗12)T. One can clearly see that K∗ can be di-
rectly calculated from Q. As a sanity check, from (1.17) we know Q∗22 = R + BTPB and
Q∗12 = ATPB. Hence , we have K∗ = −(Q+KTRK)−1BTPA, which is consistent with the
result in Section 1.3.

3. Optimal Bellman Equation: The optimal Bellman equation for Q∗ is formulated as

Q∗(x, u) = xTQx+ uTRu+ min
u′
Q∗(Ax+Bu, u′)

= xTQx+ uTRu+Q∗
(
Ax+Bu,−(Q∗22)−1(Q∗12)T(Ax+Bu)

)
which eventually leads to the following equation:[
Q∗11 Q∗12

(Q∗12)T Q∗22

]
=

[
Q 0
0 R

]
+[

A B
−(Q∗22)−1(Q∗12)TA −(Q∗22)−1(Q∗12)TB

]T [Q∗11 Q∗12
(Q∗12)T Q∗22

] [
A B

−(Q∗22)−1(Q∗12)TA −(Q∗22)−1(Q∗12)TB

]

4. Value Iteration for Q-Factor: The algorithm is initialized at (Q0
11,Q0

12,Q0
22) and then

iterated as:[
Qn+1

11 Qn+1
12

(Qn+1
12)T Qn+1

22

]
=

[
Q 0
0 R

]
+[

A B
−(Qn22)−1(Qn12)TA −(Qn22)−1(Qn12)TB

]T [Qn11 Qn12
(Qn12)T Qn22

] [
A B

−(Qn22)−1(Qn12)TA −(Qn22)−1(Qn12)TB

]
5. Policy Iteration for Q-Factor: At every step n, we first solve the Q Bellman equation to

obtain (Qn11,Qn12,Qn22) (the policy evaluation step), and then update the policy as Kn+1 =
−(Qn22)−1(Qn12)T (the policy improvement step).

2 LQR with Process Noise

In this case, the dynamics become

xt+1 = Axt +But + wt (2.1)

8

where wt is an IID Gaussian noise. Given any x0, the state xt does not converge to 0 and the cost
in (1.2) is not finite. A fix is to use the discounting factor. Now we consider the cost function

C = E
∞∑
t=0

γt(xTt Qxt + uTt Rut) (2.2)

where 0 < γ < 1 is the discounting factor. Again, this is a MDP problem. A key fact is that the
probability distribution of xt+1 is completely known if xt and ut are seen. This is due to the IID
nature of wt. When wt is Gaussian, the transition density will also be Gaussian.

Now we briefly highlight some differences introduced by this noise term.

1. Policy evaluation: Given a linear policy K, the cost becomes

C(K) = rK + Ex0∼D xT0

(∞∑
t=0

γt((A−BK)T)t(Q+KTRK)(A−BK)t

)
x0 (2.3)

where rK is some extra term introduced by the noise wt. Therefore, we can parameterize the
value function as xTPKx+ rK . Then the Bellman equation becomes

PK = Q+KTRK + γ(A−BK)TPK(A−BK)

2. Optimal Bellman equation: The Riccati equation now depends on γ and becomes

P = Q+ γATPA− γ2ATPB(R+ γBTPB)−1BTPA

The optimal policy becomes ut = −γ(R+ γBTPB)−1BTPA.

3. Value iteration: Algorithm (1.12) should be modified as

Pn+1 = γATPnA+Q− γ2ATPnB(γBTPnB +R)−1BTPnA (2.4)

4. Policy iteration: In this case, the PI algorithm iterates as Kn+1 = γ(γBTPnB+R)−1BTPnA
where Pn solves the Bellman equation γ(A−BKn)TPn(A−BKn) +Q+ (Kn)TRKn = Pn.

5. Q-Learning: Similar results can be obtained for Q-factors. The main difference is that there
is a residue term in Q-factor and the Bellman equation involves the discounting factor γ.

You should try to derive the above results yourself! All you need to do is to modify the
derivations in Section 1.

2.1 Implementation of LSTD-Q

More details on the LSTD-Q algorithm is provided to help you finish homework.

1. LSTD for state value function: Let’s consider a 2D example. Suppose x =

[
a
b

]
and ut is a

scalar. The feature can be calculated as

φ(x) =

a2

ab
b2

1

9

The state value function is parameterized as

V (x) = θ>φ(x) =
[
p1 p2 p3 r

]
a2

ab
b2

1

 =

[
a
b

]> [
p1

1
2p2

1
2p2 p3

] [
a
b

]
+ r

Now we want to fit {p1, p2, p3, r} from sampled data. We just generate a trajectory of {xt}Tt=0

using xk+1 = (A−BK)xk +wk. We fit θ to minimize the target difference error. Specifically,
we have (

T−1∑
t=0

φ(xt)(φ(xt)− γφ(xt+1))
>

)
θ ≈

T−1∑
t=0

c(xt)φ(xt)

where c(xt) = x>t (Q+K>RK)xt. So we just estimate θ as

θ ≈

(
T−1∑
t=0

φ(xt)(φ(xt)− γφ(xt+1))
>

)−1(T−1∑
t=0

c(xt)φ(xt)

)

Sometimes the inverse does not exist and we can replace it with pseudo inverse. In Matlab,
you can use pinv to calculate pseudo inverse. The above implementation requires the noise
wt to provide sufficient exploration. If the noise is too small, it will require a huge T to make
the above implementation work. In this case, you can use another implementation. Generate
xt randomly for all t using some distribution which explores the state space thoroughly.
For example, use a uniform distribution over [−1000, 1000]. For all t, generate x′t as x′t =
(A−BK)xt + wt. Now estimate θ as

θ ≈

(
T∑
t=0

φ(xt)(φ(xt)− γφ(x′t))
>

)−1(T∑
t=0

c(xt)φ(xt)

)

You can try different distribution to generate xt to see which one explores best.

2. LSTD for Q function: Again, we demonstrate the algorithm for 2D case. Suppose x =

[
a
b

]
and ut is a scalar. The feature can be calculated as

φ(x, u) =

a2

ab
b2

au
bu
u2

1

10

The Q function can be parameterized as

Q(x, u) = θ>φ(x, u) =
[
q1 q2 q3 q4 q5 q6 r

]

a2

ab
b2

au
bu
u2

1

=

ab
u

> q1 1
2q2

1
2q4

1
2q2 q3

1
2q5

1
1q4

1
2q5 q6

ab
u

+ r

Now we need to fit a 7-dimensional vector θ. We just generate a trajectory of {xt, ut}Tt=0 using
xk+1 = Axk +Buk + wk and uk = −Kxk + vk. Here vk is some noise added for exploration.
We fit θ to minimize the target difference error as

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1,−Kxt+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)

Notice typically we do not estimate θ as

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1, ut+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)

The above estimation only works when the exploration noise is some reasonable Gaussian
noise. For general exploration noise vk, we use the estimation

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1,−Kxt+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)

Notice vk should be large enough to explore the space thoroughly. For our problem, you can
start by trying uniform noise from [−500, 500] or Gaussian noise N (0, 100I). You should try
various exploration noise to figure out which one works best. Similarly, you can also generate
(xt, ut) completely randomly for all t. Here ut can be completely random, and does not need
to be generated from policy K. For example, use a uniform distribution over [−1000, 1000]
to generate (xt, ut). For all t, generate x′t as x′t = Axt +But + wt. now estimate θ as

θ ≈

(
T∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(x′t,−Kx′t))>
)−1(T∑

t=0

c(xt, ut)φ(xt, ut)

)

The above implementation is super efficient for policy iteration. You just generate the sampled
data {xt, ut, x′t} once. Then for all K, you can use the same data to estimate θ by renewing
the calculations of φ(x′t,−Kx′t). This makes LSPI sample efficient.

11

	LQR without Process Noise
	Policy Parameterization
	Policy Evaluation
	Optimal Bellman Equation: Riccati Equation
	Value Iteration
	Policy Iteration
	State-Action Value Function: Q-Factor
	Optimal State-Action Value Function

	LQR with Process Noise
	Implementation of LSTD-Q

