1.

(a) P1 is irreducible and aperiodic. The chain has a unique stationary distribution that it always converges to.

P2 is not irreducible. P2 is aperiodic. The chain does not have a unique stationary distribution. Hence it is also impossible for the chain to always converge to a unique distribution.

P3 is irreducible but not aperiodic. The chain has a unique stationary distribution. But it does not always converge to this stationary distribution.
(b) Since $A x_{k}$ is known, then x_{k+1} will have a Gaussian distribution $\mathcal{N}\left(A x_{k}, W\right)$. Next, we can compute the mean and covariance of x_{k+1} as

$$
\begin{aligned}
\mathbb{E} x_{k+1} & =A \mathbb{E} x_{k} \\
\mathbb{E} x_{k+1} x_{k+1}^{\top} & =A\left(\mathbb{E} x_{k} x_{k}^{\top}\right) A^{\top}+W
\end{aligned}
$$

2
(a) Denote the policy in the problem statement as μ. We can solve the Bellman equation. The state value function J_{μ} is just a vector. We can solve J_{μ} as $J_{\mu}=\left(I-\gamma P_{\mu}\right)^{-1} \bar{c}_{\mu}$. Here $\bar{c}_{\mu}(i)=0.6 c\left(i, a_{1}\right)+0.4 c\left(i, a_{2}\right)$. The (i, j)-th entry of P_{μ} is defined as $0.6 P\left(j, i, a_{1}\right)+$ $0.4 P\left(j, i, a_{2}\right)$ where $P(j, i, a):=P\left(s_{t+1}=j \mid s_{t}=i, a_{t}=a\right)$.

We can also solve the Bellman equation for the Q-factor. Specifically, we have

$$
Q(i, a)=c(i, a)+\gamma \sum_{j=1}^{n} P(j, i, a)\left[0.6 Q\left(j, a_{1}\right)+0.4 Q\left(j, a_{2}\right)\right]
$$

which is equivalent to another linear equation $Q_{\mu}=\hat{c}_{\mu}+\gamma M_{\mu} Q_{\mu}$ where the i-th row of M_{μ} is $\left[0.6 P\left(1, i, a_{1}\right) \quad 0.4 P\left(1, i, a_{2}\right) \quad 0.6 P\left(2, i, a_{1}\right) \quad 0.4 P\left(2, i, a_{2}\right) \ldots 0.6 P\left(n, i, a_{1}\right) \quad 0.4 P\left(n, i, a_{2}\right)\right]$, and $\left(Q_{\mu}, \hat{c}_{\mu}\right)$ can be calculated as

$$
Q_{\mu}=\left[\begin{array}{c}
Q\left(1, a_{1}\right) \\
Q\left(1, a_{2}\right) \\
Q\left(2, a_{1}\right) \\
Q\left(2, a_{2}\right) \\
\vdots \\
Q\left(n, a_{1}\right) \\
Q\left(n, a_{2}\right)
\end{array}\right] \quad, \quad \hat{c}_{\mu}=\left[\begin{array}{c}
c\left(1, a_{1}\right) \\
c\left(1, a_{2}\right) \\
c\left(2, a_{1}\right) \\
c\left(2, a_{2}\right) \\
\vdots \\
c\left(n, a_{1}\right) \\
c\left(n, a_{2}\right)
\end{array}\right]
$$

Then Q_{μ} can be calculated as $Q_{\mu}=\left(I-\gamma M_{\mu}\right)^{-1} \hat{c}_{\mu}$. When the transition model is unknown, one can apply Monte Carlo simulation or temporal difference learning to learn value functions directly.
(b) At every t, the action a_{t} is generated using the policy μ given in Problem 2(a). Next apply a_{t} and measure s_{t+1} and $c\left(s_{t}, a_{t}\right)$. Then update the Q-factor as

$$
Q_{t+1}\left(s_{t}, a_{t}\right)=Q_{t}\left(s_{t}, a_{t}\right)+\alpha_{t}\left(c\left(s_{t}, a_{t}\right)+\gamma \max \left[Q_{t}\left(s_{t+1}, a_{1}\right), Q_{t}\left(s_{t+1}, a_{2}\right)\right]-Q_{t}\left(s_{t}, a_{t}\right)\right)
$$

The size of the Q-table is $2 n$. If $s_{t}=i$ and $a_{t}=a_{j}$, then we only update the $(2 i+j-2)$-th entry of the Q-table at step t.
(c) For SARSA, we need to specify an initial action a_{0} (which can be generated arbitrarily). At every step t, apply the action a_{t}, and measure s_{t+1} and $c\left(s_{t}, a_{t}\right)$. Use Q_{t} to generate an ε-greedy policy and then use this policy to sample an action a_{t+1}. Then update the Q-factor as

$$
Q_{t+1}\left(s_{t}, a_{t}\right)=Q_{t}\left(s_{t}, a_{t}\right)+\alpha_{t}\left(c\left(s_{t}, a_{t}\right)+\gamma Q_{t}\left(s_{t+1}, a_{t+1}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right)
$$

So at step $t \geq 1$, the action a_{t} is already generated using the ε-greedy policy based on Q_{t-1}.
We can see that Q-learning is off-policy in the sense that the choice of behavior policy can be independent of Q_{t}. In contrast, SARSA is on policy since the behavior policy is directly related to Q_{t}. Another difference is that in the update rules, Q-learning requires calculating $\max _{a^{\prime}} Q_{t}\left(s_{t+1}, a^{\prime}\right)$ (which is equal to $\max \left[Q_{t}\left(s_{t+1}, a_{1}\right), Q_{t}\left(s_{t+1}, a_{2}\right)\right]$ in this problem) and SARSA directly applies $Q_{t}\left(s_{t+1}, a_{t+1}\right)$.
(d) Check Pages 3-5 of the pdf file at the following link:
https://uofi.app.box.com/s/sniit2g18p41rgdbmb2ccvkouy7z9hkv

3

(a) Given a linear policy K, it is straightforward to use induction to show

$$
\begin{equation*}
V(x)=r_{K}+x^{\top}\left(\sum_{t=0}^{\infty} \gamma^{t}\left((A-B K)^{\boldsymbol{\top}}\right)^{t}\left(Q+K^{\boldsymbol{\top}} R K\right)(A-B K)^{t}\right) x \tag{1}
\end{equation*}
$$

where r_{K} is some extra term introduced by the noise w_{t}. Therefore, we can parameterize the value function as $x^{\top} P_{K} x+r_{K}$. Therefore, we have

$$
\begin{equation*}
V(x)=x^{\top}\left(Q+K^{\top} R K\right) x+\gamma\left(\mathbb{E}((A-B K) x+w)^{\top} P_{K}((A-B K) x+w)+r_{K}\right) \tag{2}
\end{equation*}
$$

Notice w is independent from x and has a zero mean, we have

$$
\mathbb{E}((A-B K) x+w)^{\top} P_{K}((A-B K) x+w)=x^{\top}(A-B K)^{\top} P_{K}(A-B K) x+\mathbb{E}\left(w^{\top} P_{K} w\right)
$$

Notice that the left side of (2) is just $x^{\boldsymbol{\top}} P_{K} x+r_{K}$. Hence (2) can be rewritten as

$$
x^{\boldsymbol{\top}} P_{K} x+r_{K}=x^{\boldsymbol{\top}}\left(Q+K^{\top} R K\right) x+\gamma x^{\boldsymbol{\top}}(A-B K)^{\boldsymbol{\top}} P_{K}(A-B K) x+\gamma \mathbb{E}\left(w^{\boldsymbol{\top}} P_{K} w\right)+\gamma r_{K}
$$

To ensure that the quadratic functions on the left and right sides of the above equation are the same, the following have to be true:

$$
\begin{aligned}
x^{\top} P_{K} x & =x^{\top}\left(Q+K^{\top} R K\right) x+\gamma x^{\top}(A-B K)^{\top} P_{K}(A-B K) x \\
r_{K} & =\gamma \mathbb{E}\left(w^{\top} P_{K} w\right)+\gamma r_{K}
\end{aligned}
$$

Hence, the Bellman equation becomes

$$
P_{K}=Q+K^{\top} R K+\gamma(A-B K)^{\top} P_{K}(A-B K)
$$

and $r_{K}=\frac{\gamma}{1-\gamma} \mathbb{E}\left(w^{\top} P_{K} w\right)=\frac{\gamma}{1-\gamma} \operatorname{trace}(P W)$ where W is the covariance matrix of w_{t}.
For the \mathcal{Q}-function, we have

$$
\begin{aligned}
\mathcal{Q}(x, u) & =x^{\top} Q x+u^{\top} R u+\gamma \mathbb{E} V(A x+B u+w) \\
& =x^{\top} Q x+u^{\top} R u+\gamma \mathbb{E}(A x+B u+w)^{\top} P_{K}(A x+B u+w)+\gamma r_{K} \\
& =x^{\top} Q x+u^{\top} R u+\gamma(A x+B u)^{\top} P_{K}(A x+B u)+\gamma\left(\mathbb{E}\left(w^{\top} P_{K} w\right)+r_{K}\right) \\
& =\left[\begin{array}{c}
x \\
u
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q+\gamma A^{\top} P_{K} A & \gamma A^{\top} P_{K} B \\
\gamma B^{\top} P_{K} A & R+\gamma B^{\top} P_{K} B
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]+r_{K}
\end{aligned}
$$

We can also directly parameterize $\mathcal{Q}(x, u)$ as

$$
\mathcal{Q}(x, u)=\left[\begin{array}{l}
x \\
u
\end{array}\right]^{\top}\left[\begin{array}{ll}
\mathcal{Q}_{11} & \mathcal{Q}_{12} \\
\mathcal{Q}_{12}^{\top} & \mathcal{Q}_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]+r_{K}
$$

Notice $V(x)=\mathcal{Q}(x,-K x)$. Therefore, we can substitute this into the above equation to obtain the Bellman equation for \mathcal{Q} :

$$
\mathcal{Q}(x, u)=x^{\top} Q x+u^{\top} R u+\gamma \mathbb{E} \mathcal{Q}(A x+B u+w,-K(A x+B u+w))
$$

which is equivalent to

$$
\begin{aligned}
{\left[\begin{array}{ll}
\mathcal{Q}_{11} & \mathcal{Q}_{12} \\
\mathcal{Q}_{12}^{\top} & \mathcal{Q}_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
Q & 0 \\
0 & R
\end{array}\right]+\gamma\left[\begin{array}{cc}
A & B \\
-K A & -K B
\end{array}\right]^{\top}\left[\begin{array}{ll}
\mathcal{Q}_{11} & \mathcal{Q}_{12} \\
\mathcal{Q}_{12}^{\top} & \mathcal{Q}_{22}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
-K A & -K B
\end{array}\right] \\
r_{K} & =\gamma \mathbb{E}\left[\begin{array}{c}
w \\
-K w
\end{array}\right]^{\top}\left[\begin{array}{ll}
\mathcal{Q}_{11} & \mathcal{Q}_{12} \\
\mathcal{Q}_{12}^{\top} & \mathcal{Q}_{22}
\end{array}\right]\left[\begin{array}{c}
w \\
-K w
\end{array}\right]+\gamma r_{K}
\end{aligned}
$$

(b) Optimal Bellman equation: Suppose the optimal state value function is $x^{\boldsymbol{\top}} P x+r$. We have

$$
\begin{aligned}
x^{\top} P x+r & =\min _{u}\left(x^{\top} Q x+u^{\top} R u+\gamma \mathbb{E}(A x+B u+w)^{\top} P(A x+B u+w)+\gamma r\right) \\
& =\min _{u}\left(x^{\top} Q x+u^{\top} R u+\gamma(A x+B u)^{\top} P(A x+B u)+\gamma \mathbb{E} w^{\top} P w+\gamma r\right)
\end{aligned}
$$

Taking gradient of the function on the right side with respect to u leads to

$$
u=-\gamma\left(R+\gamma B^{\top} P B\right)^{-1} B^{\top} P A x
$$

which can be substituted back to get the following optimal Bellman equation:

$$
P=Q+\gamma A^{\top} P A-\gamma^{2} A^{\top} P B\left(R+\gamma B^{\top} P B\right)^{-1} B^{\top} P A
$$

Then the optimal state-action value function can be calculated as

$$
\mathcal{Q}^{*}(x, u)=\left[\begin{array}{l}
x \\
u
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q+\gamma A^{\top} P A & \gamma A^{\top} P B \\
\gamma B^{\top} P A & R+\gamma B^{\top} P B
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]+\frac{\gamma}{1-\gamma} \operatorname{trace}(P W)
$$

(c) Policy iteration: The PI algorithm iterates as $K^{n+1}=\gamma\left(\gamma B^{\top} P^{n} B+R\right)^{-1} B^{\boldsymbol{\top}} P^{n} A$ where P_{n} solves the Bellman equation $\gamma\left(A-B K^{n}\right)^{\top} P^{n}\left(A-B K^{n}\right)+Q+\left(K^{n}\right)^{\top} R K^{n}=$ P^{n}. Another option is to evaluate \mathcal{Q} for every step and then design a policy which is the greedy policy for \mathcal{Q}. Specifically, at every step n, we first solve the \mathcal{Q} Bellman equation to obtain $\left(\mathcal{Q}_{11}^{n}, \mathcal{Q}_{12}^{n}, \mathcal{Q}_{22}^{n}\right)$ (the policy evaluation step), and then update the policy as $K_{n+1}=$ $\left(\mathcal{Q}_{22}^{n}\right)^{-1}\left(\mathcal{Q}_{12}^{n}\right)^{\top}$ (the policy improvement step).

To estimate \mathcal{Q}-Factor from data, one can either use Monte Carlo simulation or LSTDQ (see the LQR note for the details).
(d) For SARSA, the initial action u_{0} can be arbitrary. At every step n, apply the control action u_{n} and measure x_{n+1} and $c\left(x_{n}, u_{n}\right)=x_{n}^{\top} Q x_{n}+u_{n}^{\top} R u_{n}$. Choose u_{n+1} using the ε-greedy policy generated by $\mathcal{Q}_{n}(x, u)=\theta_{n}^{\top} \phi(x, u)$ where ϕ is the feature. Then update the weight vector as $\theta_{n+1}=\theta_{n}+\alpha_{n} \phi\left(x_{n}, u_{n}\right)\left(c\left(x_{n}, u_{n}\right)+\gamma \theta_{n}^{\top} \phi\left(x_{n+1}, u_{n+1}\right)-\theta_{n}^{\top} \phi\left(x_{n}, u_{n}\right)\right)$. For every $n \geq 1$, u_{n} was sampled using the ε-greedy policy generated by $\theta_{n-1}^{\top} \phi(x, u)$. For Q-learning, we can choose any behavior policy that provides sufficient exploration. At every step n, sample u_{n} using the behavior policy and measure x_{n+1} and $c\left(x_{n}, u_{n}\right)$. Then update the weight vector as $\theta_{n+1}=\theta_{n}+\alpha_{k} \phi\left(x_{n}, u_{n}\right)\left(c\left(x_{n}, u_{n}\right)+\gamma \min _{u} \theta_{n}^{\top} \phi\left(x_{n+1}, u\right)-\theta_{n}^{\top} \phi\left(x_{n}, u_{n}\right)\right)$. Again, \mathcal{Q}-learning is off-policy and the sampling can be done using any behavior policy providing sufficient exploration. SARSA is on-policy and the action sampling is done using the ε-greedy policy given by $\theta_{n}^{\top} \phi(x, u)$. Finally, it is worth mentioning that a naive implementation of Q-learning may fail for many continuous control problems due to stability issues.

4

(a) Popular options for Ψ_{t} :

- Monte Carlo estimation: $\sum_{t^{\prime}=t}^{\infty} \gamma^{t^{\prime}-t} c_{t^{\prime}}$
- Baselined versions of Monte Carlo estimation: $\sum_{t^{\prime}=t}^{\infty}\left(\gamma^{t^{\prime}-t} c_{t^{\prime}}-b\left(x_{t}\right)\right)$
- State-action value function: $Q^{\pi}\left(x_{t}, u_{t}\right)$
- Advantage function: $A^{\pi}\left(x_{t}, u_{t}\right)$
- TD residual: $c_{t}+\gamma V^{\pi}\left(x_{t+1}\right)-V^{\pi}\left(x_{t}\right)$
- Generalized advantage estimation

To calculate the gradient, first notice K is a matrix. Hence $\nabla_{\theta} \log \pi_{\theta}$ is also a matrix. The (i, j)-th entry of this matrix is just

$$
\frac{\partial \log \pi_{\theta}}{\partial K_{i j}}=-\sigma^{-1}\left(u_{t}^{(i)}+\sum_{p=1}^{n_{x}} K_{i p} x_{t}^{(p)}\right) x_{t}^{(j)}
$$

where the superscript (i) denotes the i-th entry of the vector. More compactly, we can write $\nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)=-(\sigma I)^{-1}\left(u_{t}+K x_{t}\right) x_{t}^{\top}$.

Now consider the case $u_{t} \sim \mathcal{N}\left(W^{1} h\left(W^{0} x_{t}\right), \sigma I\right)$. The derivative with respect to W^{1} can be directly calculated as

$$
\frac{\partial}{\partial W^{1}} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)=\sigma^{-1}\left(u_{t}-W^{1} h\left(W^{0} x_{t}\right)\right)\left(h\left(W^{0} x_{t}\right)\right)^{\top}
$$

The derivative with respect to W^{0} requires a backpropagation step and can be calculated as

$$
\frac{\partial}{\partial W^{0}} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)=\sigma^{-1}\left(W^{1} \operatorname{diag}\left(h^{\prime}\left(W^{0} x_{t}\right)\right)\right)^{\top}\left(u_{t}-W^{1} h\left(W^{0} x_{t}\right)\right) x_{t}^{\top}
$$

where $\operatorname{diag}\left(h^{\prime}\left(W^{0} x_{t}\right)\right)$ is a diagonal matrix whose (i, i)-th entry is equal to the i-th entry of the vector $h^{\prime}\left(W^{0} x_{t}\right)$. See Section 3.1 of the following survey paper for a detailed treatment of backpropogation:
https://arxiv.org/pdf/1912.08957.pdf
(b)

$$
\begin{aligned}
\mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)}\left(\lim _{\sigma \rightarrow 0} \frac{\mathcal{C}(K+\sigma \varepsilon)-\mathcal{C}(K)}{\sigma}\right) \varepsilon & =\mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)}\left(\varepsilon^{\top} \nabla \mathcal{C}(K)\right) \varepsilon \\
& =\mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)} \varepsilon\left(\varepsilon^{\top} \nabla C(K)\right) \\
& =\mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)}\left(\varepsilon \varepsilon^{\top}\right) \nabla C(K) \\
& =\nabla C(K)
\end{aligned}
$$

5
A code provided on the course website. LSTD-Q works efficiently for (b), and Approximate PI works efficiently for (c). Based on the simulation, the approximate PI method can converge to the optimal control gain within 10 iterations. See the code for how to setup behavior policy for efficient exploration.

