
ECE586RL: MDPs and Reinforcement Learning Spring 2020

Solutions for Homework 1

1.
(a) P1 is irreducible and aperiodic. The chain has a unique stationary distribution that

it always converges to.
P2 is not irreducible. P2 is aperiodic. The chain does not have a unique stationary distri-

bution. Hence it is also impossible for the chain to always converge to a unique distribution.
P3 is irreducible but not aperiodic. The chain has a unique stationary distribution. But

it does not always converge to this stationary distribution.

(b) Since Axk is known, then xk+1 will have a Gaussian distribution N (Axk,W ). Next,
we can compute the mean and covariance of xk+1 as

Exk+1 = AExk
Exk+1x

T
k+1 = A(ExkxTk )AT +W

2

(a) Denote the policy in the problem statement as µ. We can solve the Bellman equation.
The state value function Jµ is just a vector. We can solve Jµ as Jµ = (I − γPµ)−1c̄µ.
Here c̄µ(i) = 0.6c(i, a1) + 0.4c(i, a2). The (i, j)-th entry of Pµ is defined as 0.6P (j, i, a1) +
0.4P (j, i, a2) where P (j, i, a) := P (st+1 = j|st = i, at = a).

We can also solve the Bellman equation for the Q-factor. Specifically, we have

Q(i, a) = c(i, a) + γ
n∑
j=1

P (j, i, a)[0.6Q(j, a1) + 0.4Q(j, a2)]

which is equivalent to another linear equation Qµ = ĉµ+γMµQµ where the i-th row of Mµ is[
0.6P (1, i, a1) 0.4P (1, i, a2) 0.6P (2, i, a1) 0.4P (2, i, a2) . . . 0.6P (n, i, a1) 0.4P (n, i, a2)

]
, and

(Qµ, ĉµ) can be calculated as

Qµ =



Q(1, a1)
Q(1, a2)
Q(2, a1)
Q(2, a2)

...
Q(n, a1)
Q(n, a2)


, ĉµ =



c(1, a1)
c(1, a2)
c(2, a1)
c(2, a2)

...
c(n, a1)
c(n, a2)


1-1



ECE586RL Spring 2020

Then Qµ can be calculated as Qµ = (I−γMµ)−1ĉµ. When the transition model is unknown,
one can apply Monte Carlo simulation or temporal difference learning to learn value functions
directly.

(b) At every t, the action at is generated using the policy µ given in Problem 2(a). Next
apply at and measure st+1 and c(st, at). Then update the Q-factor as

Qt+1(st, at) = Qt(st, at) + αt (c(st, at) + γmax[Qt(st+1, a1), Qt(st+1, a2)]−Qt(st, at))

The size of the Q-table is 2n. If st = i and at = aj, then we only update the (2i+ j − 2)-th
entry of the Q-table at step t.

(c) For SARSA, we need to specify an initial action a0 (which can be generated arbi-
trarily). At every step t, apply the action at, and measure st+1 and c(st, at). Use Qt to
generate an ε-greedy policy and then use this policy to sample an action at+1. Then update
the Q-factor as

Qt+1(st, at) = Qt(st, at) + αt (c(st, at) + γQt(st+1, at+1)−Qt(st, at))

So at step t ≥ 1, the action at is already generated using the ε-greedy policy based on Qt−1.
We can see that Q-learning is off-policy in the sense that the choice of behavior policy can

be independent of Qt. In contrast, SARSA is on policy since the behavior policy is directly
related to Qt. Another difference is that in the update rules, Q-learning requires calculat-
ing maxa′ Qt(st+1, a

′) (which is equal to max[Qt(st+1, a1), Qt(st+1, a2)] in this problem) and
SARSA directly applies Qt(st+1, at+1).

(d) Check Pages 3-5 of the pdf file at the following link:
https://uofi.app.box.com/s/sniit2g18p41rgdbmb2ccvkouy7z9hkv

3

(a) Given a linear policy K, it is straightforward to use induction to show

V (x) = rK + xT

(
∞∑
t=0

γt((A−BK)T)t(Q+KTRK)(A−BK)t

)
x (1)

where rK is some extra term introduced by the noise wt. Therefore, we can parameterize
the value function as xTPKx+ rK . Therefore, we have

V (x) = xT(Q+KTRK)x+ γ
(
E((A−BK)x+ w)TPK((A−BK)x+ w) + rK

)
(2)

Notice w is independent from x and has a zero mean, we have

E((A−BK)x+ w)TPK((A−BK)x+ w) = xT(A−BK)TPK(A−BK)x+ E(wTPKw)

1-2



ECE586RL Spring 2020

Notice that the left side of (2) is just xTPKx+ rK . Hence (2) can be rewritten as

xTPKx+ rK = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x+ γE(wTPKw) + γrK

To ensure that the quadratic functions on the left and right sides of the above equation are
the same, the following have to be true:

xTPKx = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x

rK = γE(wTPKw) + γrK

Hence, the Bellman equation becomes

PK = Q+KTRK + γ(A−BK)TPK(A−BK)

and rK = γ
1−γE(wTPKw) = γ

1−γ trace(PW ) where W is the covariance matrix of wt.
For the Q-function, we have

Q(x, u) = x>Qx+ u>Ru+ γEV (Ax+Bu+ w)

= x>Qx+ u>Ru+ γE(Ax+Bu+ w)TPK(Ax+Bu+ w) + γrK

= x>Qx+ u>Ru+ γ(Ax+Bu)TPK(Ax+Bu) + γ(E(wTPKw) + rK)

=

[
x
u

]T [
Q+ γATPKA γATPKB
γBTPKA R + γBTPKB

] [
x
u

]
+ rK

We can also directly parameterize Q(x, u) as

Q(x, u) =

[
x
u

]T [Q11 Q12

QT
12 Q22

] [
x
u

]
+ rK

Notice V (x) = Q(x,−Kx). Therefore, we can substitute this into the above equation to
obtain the Bellman equation for Q:

Q(x, u) = x>Qx+ u>Ru+ γEQ (Ax+Bu+ w,−K(Ax+Bu+ w))

which is equivalent to[
Q11 Q12

QT
12 Q22

]
=

[
Q 0
0 R

]
+ γ

[
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

]
rK = γE

[
w
−Kw

]T [Q11 Q12

QT
12 Q22

] [
w
−Kw

]
+ γrK

(b) Optimal Bellman equation: Suppose the optimal state value function is xTPx + r.
We have

xTPx+ r = min
u

(xTQx+ uTRu+ γE(Ax+Bu+ w)TP (Ax+Bu+ w) + γr)

= min
u

(xTQx+ uTRu+ γ(Ax+Bu)TP (Ax+Bu) + γEwTPw + γr)

1-3



ECE586RL Spring 2020

Taking gradient of the function on the right side with respect to u leads to

u = −γ(R + γBTPB)−1BTPAx.

which can be substituted back to get the following optimal Bellman equation:

P = Q+ γATPA− γ2ATPB(R + γBTPB)−1BTPA

Then the optimal state-action value function can be calculated as

Q∗(x, u) =

[
x
u

]T [
Q+ γATPA γATPB
γBTPA R + γBTPB

] [
x
u

]
+

γ

1− γ
trace(PW )

(c) Policy iteration: The PI algorithm iterates as Kn+1 = γ(γBTP nB + R)−1BTP nA
where Pn solves the Bellman equation γ(A − BKn)TP n(A − BKn) + Q + (Kn)TRKn =
P n. Another option is to evaluate Q for every step and then design a policy which is the
greedy policy for Q. Specifically, at every step n, we first solve the Q Bellman equation to
obtain (Qn11,Qn12,Qn22) (the policy evaluation step), and then update the policy as Kn+1 =
(Qn22)−1(Qn12)T (the policy improvement step).

To estimate Q-Factor from data, one can either use Monte Carlo simulation or LSTDQ
(see the LQR note for the details).

(d) For SARSA, the initial action u0 can be arbitrary. At every step n, apply the control
action un and measure xn+1 and c(xn, un) = xTnQxn+uTnRun. Choose un+1 using the ε-greedy
policy generated by Qn(x, u) = θTnφ(x, u) where φ is the feature. Then update the weight
vector as θn+1 = θn + αnφ(xn, un)(c(xn, un) + γθTnφ(xn+1, un+1) − θTnφ(xn, un)). For every
n ≥ 1, un was sampled using the ε-greedy policy generated by θTn−1φ(x, u). ForQ-learning, we
can choose any behavior policy that provides sufficient exploration. At every step n, sample
un using the behavior policy and measure xn+1 and c(xn, un). Then update the weight vector
as θn+1 = θn+αkφ(xn, un)(c(xn, un) +γminu θ

T
nφ(xn+1, u)−θTnφ(xn, un)). Again, Q-learning

is off-policy and the sampling can be done using any behavior policy providing sufficient
exploration. SARSA is on-policy and the action sampling is done using the ε-greedy policy
given by θTnφ(x, u). Finally, it is worth mentioning that a naive implementation of Q-learning
may fail for many continuous control problems due to stability issues.

4

(a) Popular options for Ψt:

• Monte Carlo estimation:
∑∞

t′=t γ
t′−tct′

• Baselined versions of Monte Carlo estimation:
∑∞

t′=t(γ
t′−tct′ − b(xt))

• State-action value function: Qπ(xt, ut)

1-4



ECE586RL Spring 2020

• Advantage function: Aπ(xt, ut)

• TD residual: ct + γV π(xt+1)− V π(xt)

• Generalized advantage estimation

To calculate the gradient, first notice K is a matrix. Hence ∇θ log πθ is also a matrix.
The (i, j)-th entry of this matrix is just

∂ log πθ
∂Kij

= −σ−1(u(i)t +
nx∑
p=1

Kipx
(p)
t )x

(j)
t

where the superscript (i) denotes the i-th entry of the vector. More compactly, we can write
∇θ log πθ(ut|xt) = −(σI)−1(ut +Kxt)x

T
t .

Now consider the case ut ∼ N (W 1h(W 0xt), σI). The derivative with respect to W 1 can
be directly calculated as

∂

∂W 1
log πθ(ut|xt) = σ−1(ut −W 1h(W 0xt))(h(W 0xt))

T

The derivative with respect to W 0 requires a backpropagation step and can be calculated
as

∂

∂W 0
log πθ(ut|xt) = σ−1(W 1 diag(h′(W 0xt)))

T(ut −W 1h(W 0xt))x
T
t

where diag(h′(W 0xt)) is a diagonal matrix whose (i, i)-th entry is equal to the i-th entry of
the vector h′(W 0xt). See Section 3.1 of the following survey paper for a detailed treatment
of backpropogation:

https://arxiv.org/pdf/1912.08957.pdf

(b)

Eε∼N (0,I)

(
lim
σ→0

C(K + σε)− C(K)

σ

)
ε = Eε∼N (0,I)(ε

T∇C(K))ε

= Eε∼N (0,I)ε(ε
T∇C(K))

= Eε∼N (0,I)(εε
T)∇C(K)

= ∇C(K)

5

A code provided on the course website. LSTD-Q works efficiently for (b), and Approxi-
mate PI works efficiently for (c). Based on the simulation, the approximate PI method can
converge to the optimal control gain within 10 iterations. See the code for how to setup
behavior policy for efficient exploration.

1-5


