
ECE 598: Interplay between Control and Machine Learning Fall 2020

Homework 1

Instructor: Bin Hu Due date: September 24, 2020

Each problem is worth 5 points, and the total points in HW1 is 15.

1. In this problem, you are asked to implement a few LMIs.
(a) Consider a dynamical system xk+1 = Axk where

A =

 −0.5 −0.85 0.33
−0.23 0.71 0.79
0.41 −0.1 −0.21

 .
You want to test the stability of this system by using the following SDP

P > 0

ATPA− P < 0

Your task is to implement and test this SDP. You can use any software of your choosing,
e.g. CVX or LMILab. Notice CVX strongly discourages strict inequalities. In addition, if
P is a solution for the above LMI, cP is also a solution for any c > 0. Hence the LMI is
homogeneous. We need to break the homogeneity so that the numerical solver can give us
one solution. One way to do this is to replace the original LMI as

P ≥ εI

ATPA− P ≤ −εI

where ε is some small positive number. Another way of doing things is enforcing the trace
of P to be a positive constant while using P ≥ 0 and ATPA − P ≤ 0. A sample code for
this LMI implementation in CVX is provided in the course website.

(b) Still consider the same dynamical system in (a). We know the system converges at
a rate ρ if there exists P > 0 such that ATPA− ρ2P ≤ 0. When ρ2 is fixed, this is a SDP.
Hence you can use the code to find the smallest ρ such that the LMI is feasible. Find that
value of ρ and compare it with the spectral radius of A. Are they the same?

(c) Now consider the gradient method xk+1 = xk − α∇f(xk) and assume f is L-smooth
and m-strongly convex. In the class, we have shown that the gradient method converges at
the rate ρ if there exists non-negative λ such that[

1− ρ2 −α
−α α2

]
≤ λ

[
2mL −(m+ L)

−(m+ L) 2

]
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The above LMI is already not homogeneous (λ being a solution does not mean cλ being
a solution) so you can directly implement it. Given the values of (m,L) (let’s say set
(m,L) to be (1, 10), (1, 100), (0.1, 23), (1, 1000), and (1, 50000)), try a few values of α
satisfying α < 2

L
and find the smallest ρ2 such that the above LMI is feasible. Is ρ equal to

max{|1−mα|, |1− Lα|}? What happens to the simulation when L
m

is really large?

2. In this problem, you will be asked to test a few LMIs for stochastic gradient descent
(SGD) and SAGA. In the class, we talked about how to analyze SGD under the assumptions
that f is m-strongly convex and fi is L-smooth and convex. Here you are asked to analyze
SGD under a different set of assumptions:

• f satisfies the “one-point convexity” condition: f has a unique global minimizer x∗

and for all x, one has (x− x∗)T∇f(x) ≥ m‖x− x∗‖2 with m > 0.

• fi is L-smooth for all i.

Under the above assumptions, f and fi are not convex in general. However, you can still
obtain a convergence bound for SGD under these assumptions.

(a) Suppose vk = ∇fik(wk). Based on the above assumptions, the following two inequal-
ities hold

E
[
vk − x∗
wk

]T [−2L2I 0
0 I

] [
vk − x∗
wk

]
≤ 2

n

n∑
i=1

‖∇fi(x∗)‖2 = M

E
[
vk − x∗
wk

]T [
2mI −I
−I 0

] [
vk − x∗
wk

]
≤ 0

Use the above inequalities to prove that if there exists non-negative λ1 and λ2 such that[
1− ρ2 −α
−α α2

]
− λ1

[
−2L2 0

0 1

]
− λ2

[
2m −1
−1 0

]
≤ 0, (1)

then SGD satisfies the bound

E‖xk − x∗‖2 ≤ ρ2kE‖x0 − x∗‖2 +
λ1M

1− ρ2

(b) Use the above LMI condition to show that SGD satisfies the following bound:

E‖xk − x∗‖2 ≤ (1− 2mα + 2L2α2)kE‖x0 − x∗‖2 +
α2M

2mα− 2L2α2
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(c) Finally, analyze SAGA under the assumption that fi is L-smooth and m-strongly
convex for all i. Under this assumption, f is also L-smooth and m-strongly convex. Suppose
a uniform sampling is used, i.e. pi = 1

n
. Implement the LMI in Lecture 9. Set n = 20. Set

(m,L) to be (1, 10) and (1, 100). Set α = 1
3L

and ρ2 = 1 −min{ 1
3n
, m
3L
}. Is the LMI always

feasible? Is there any structure in P and λj?

3. In this problem, you will be asked to perform several calculations, and these calcula-
tions eventually lead to the convergence rate proof for Nesterov’s accelerated method applied
to smooth strongly-convex objective functions. Recall Nesterov’s method is

xk+1 = xk + β(xk − xk−1)− α∇f((1 + β)xk − βxk−1)

which can also be written as

ξk+1 = Aξk +Bwk

vk = Cξk

wk = ∇f(vk)

where A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
.

(a) Assume f is L-smooth and m-strongly convex. By L-smoothness and m-strong con-
vexity, we have

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(xk − vk) +
m

2
‖xk − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X1

 xk − x∗
xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)T(xk − vk) + m

2
‖xk − vk‖2 +∇f(vk)T(vk −

xk+1) − L
2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X1 (actually we have already done this in the class).

(b) Similarly, by L-smoothness and m-strong convexity, we have

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(x∗ − vk) +
m

2
‖x∗ − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)
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The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)T(x∗ − vk) + m

2
‖x∗ − vk‖2 +∇f(vk)T(vk −

xk+1) − L
2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X2.

(c) Now based on the inequalities in (a) and (b), you can simply choose X = ρ2X1 + (1−
ρ2)X2 for any 0 < ρ < 1, and we have xk − x∗

xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)

 ≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

Based on the testing condition presented in the class, if there exists P ≥ 0 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0 (2)

then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)


≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

which directly leads to the linear convergence rate for Nesterov’s method:

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗) + f(xk+1)− f(x∗) ≤ ρ2
(
(ξk − ξ∗)TP (ξk − ξ∗) + f(xk)− f(x∗)

)
.

Finding P to satisfy (2) is not trivial. Your task is to implement the above LMI and test

its feasibility with ρ2 = 1−
√

m
L

, α = 1
L

, and β =
√
L−
√
m√

L+
√
m

. Again, try a few different values

of (m,L) and see what happens to the numerical solution of P . Also, is there any pattern
in the resultant matrix on the left side of (2)?

(d) Your task is to prove that (2) holds for P = 1
2

[ √
LI

(
√
m−

√
L)I

] [√
LI (

√
m−

√
L)I
]
≥

0, ρ2 = 1−
√

m
L

, and X = ρ2X1 + (1− ρ2)X2 (X1 and X2 are the answers you get in (a) and

(b)) when α = 1
L

and β =
√
L−
√
m√

L+
√
m

.

(Hint: The calculation here can be lengthy. So you are allowed to use some symbolic
toolbox to help as long as you turn in the code.)
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