
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 10
Q-Factors and Policy Iteration

Lecturer: Bin Hu, Date:10/06/2020

In this lecture, we discuss the state-action value function (which is also called Q-function).

10.1 Discrete Space Case

Recall that a MDP is defined by a tuple 〈S,A, P, R, γ〉 where S is the state space, A is
the action space, P is the transition kernel, R is the reward, and γ is the discount factor.
Suppose both S and A are finite. Given a policy π, the state-action value function is defined
as

Qπ(s, a) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk)∀k ≥ 1, s0 = s, a0 = a

]
.

For a deterministic policy π, the Q-function satisfy

Qπ(s, a) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣s0 = s, a0 = a, ak = π(sk)∀k ≥ 1

]
.

Now we can apply the law of total probability to show:

Qπ(s, a) = ER(s0, a0) + E

[
∞∑
k=1

γkR(sk, π(sk))
∣∣s0 = s, a0 = a

]

= ER(s, a) +
∑
s′∈S

(
E[
∞∑
k=1

γkR(sk, π(sk))
∣∣s1 = s′]

)
P (s1 = s′

∣∣s0 = s, a0 = a)

which can be rewritten as

Qπ(s, a) = R̄π(s, a) + γ
∑
s′∈S

Qπ(s′, π(s′))P a
ss′ (10.1)

This is just the Bellman equation for Q-factor. Similarly, when π is stochastic, we have

Qπ(s, a) = R̄π(s, a) + γ
∑
s′∈S

∑
a′∈A

π(a′|s′)Qπ(s′, a′)P a
ss′ (10.2)

which could also be cast as a linear equation

Qπ = R̄π + γP̄ πQπ (10.3)

Therefore, the Bellman equation for Q-factor is also linear in this case.

10-1

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

Connections between V π and Qπ. If we know V π, we can calculate Qπ as

Qπ(s, a) = R̄π(s, a) + γ
∑
s′∈S

V π(s′)P a
ss′ (10.4)

If we know Qπ, we can calculate V π as V π(s) = Q(s, π(s)) (the deterministic policy case) or
V π(s) =

∑
a∈AQ(s, a)π(a|s) (the stochastic policy case).

Optimal Q function. Now suppose the optimal policy is π∗. Let the state-action value
function of π∗ be Q∗, which is the optimal state-action value function. Clearly, Q∗ can be
calculated from V ∗ as

Q∗(s, a) = R̄π(s, a) + γ
∑
s′∈S

V ∗(s′)P a
ss′ (10.5)

From this, we can immediately see that a deterministic optimal policy can be given as

π∗(s) = arg max
a∈A

(
R̄π(s, a) + γ

∑
s′∈S

V ∗(s′)P a
ss′

)
= arg max

a∈A
Q∗(s, a)

Therefore, once Q∗ is known, we can obtain an optimal policy without knowing the model.
The above fact also states that V ∗(s) = maxa∈AQ(s, a). In general, if the state-action value
function is known, the state value function can be calculated without knowing the model. We
can substitute V ∗(s′) = maxa′∈AQ(s′, a′) into (10.5) to obtain the optimal Bellman equation
for Q-factor:

Q∗(s, a) = R̄π(s, a) + γ
∑
s′∈S

P a
ss′ max

a′∈A
Qπ(s′, a′) (10.6)

Now recall that the optimal Bellman equation for V ∗ is

V ∗(s) = max
a∈A

[
R̄(s, a) + γ

∑
s′

P a
ss′V

∗(s′)

]
(10.7)

From the comparison, we can see that in the optimal Bellman equation for Q-factor, one
first applies maximization and then does some average. For V ∗, one first averages things and
then apply maximization. This difference is important for the development of value-based
RL methods.

Why is Q-factor useful? One big advantage is that once Q∗ is known, one can calculate
the optimal policy without knowing the model. Another big advantage is related to the
development of the policy iteration method.

10-2

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

Policy iteration. One form of policy iteration works as follows. For every iteration k,
one first evaluates the Q-function of the policy πk. Then obtain a new policy as πk+1(s) =
maxa∈AQ

πk(s, a). Then evaluate the Q function for πk+1 and regenerate new policies by
greedily planning according to the new Q functions. If we have a data driven method to
estimate Q for any given policy, then we can implement the policy iteration method in a
model free manner. This is called approximate policy iteration (API).

Q-Learning. Instead of doing policy iteration, one can also try to estimate Q∗ from data
by extending the idea of value iteration. We will talk about this later.

10.2 Continuous Space Case

10.2.1 LQR without Process Noise

For simplicity, again let’s first consider the LQR setup:

xt+1 = Axt +But (10.8)

The goal is to design a controller to minimize the quadratic cost.
Given a fixed policy K, the state-action value function can be calculated as

Q(x, u) = x>Qx+ u>Ru+
∞∑
t=1

xTt (Q+K>RK)xt

where x1 = Ax + Bu. Notice the control actions at all steps except step k = 0 are selected
as ut = −Kxt. At k = 0, the control action is u and independent of the policy K. This
initial control action u is an input to the state-action value function.

Suppose V (x) is the state value function. Then obviously, we have

Q(x, u) = x>Qx+ u>Ru+ V (Ax+Bu) (10.9)

In addition, we also have V (x) = Q(x,−Kx). Therefore, we can substitute this into the
above equation to obtain the Bellman equation for Q:

Q(x, u) = x>Qx+ u>Ru+Q (Ax+Bu,−K(Ax+Bu))

Suppose we know Q is a quadratic function of (x, u), and we parameterize the function as[
x
u

]T [Q11 Q12

QT
12 Q22

] [
x
u

]
=

[
x
u

]T [
Q 0
0 R

] [
x
u

]
+

[
Ax+Bu

−K(Ax+Bu)

]T [Q11 Q12

QT
12 Q22

] [
Ax+Bu

−K(Ax+Bu)

]
=

[
x
u

]T [
Q 0
0 R

] [
x
u

]
+

[
x
u

]T [
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

] [
x
u

]

10-3

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

Therefore, the Bellman equation for Q-factor is just the following equation for Q11, Q12, and
Q22. [

Q11 Q12

QT
12 Q22

]
=

[
Q 0
0 R

]
+

[
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

]
(10.10)

The above equation is linear in Q11, Q12, and Q22. Hence, it can be solved by linear equation
theory. We have

vec

([
Q11 Q12

QT
12 Q22

])
=

(
I −

[
A B
−KA −KB

]T
⊗
[

A B
−KA −KB

]T)−1
vec

([
Q 0
0 R

])
(10.11)

Why is the quadratic parameterization of Q-factor valid? Notice that we can obtain the
Q-factor using the value function directly. Suppose V (x) = xTPx. By (10.9), we can obtain

Q(x, u) = x>Qx+ u>Ru+ (Ax+Bu)TPK(Ax+Bu)

= x>Qx+ u>Ru+

[
x
u

]T [
ATPKA ATPKB
BTPKA BTPKB

] [
x
u

]
=

[
x
u

]T [
Q+ ATPKA ATPKB
BTPKA R +BTPKB

] [
x
u

]
Therefore, for the LQR problem, we can parameterize Q-factor as a quadratic function. For
general nonlinear control problems, we need to use more general function approximators
such as neural networks.

Now it is obvious that the only solution for (10.11) is provided by[
Q11 Q12

QT
12 Q22

]
=

[
Q+ ATPKA ATPKB
BTPKA R +BTPKB

]
.

One can also solve (10.11) using an iterative algorithm.

Optimal state-action value function. By definition, we have Q∗(x, u) = minπQ(x, u).
Now we discuss various properties of Q∗.

1. Relation between Q∗ and V ∗: For the LQR problem, the optimal state value func-
tion and the optimal state-action value function satisfy the following equation:

Q∗(x, u) = xTQx+ uTRu+ V ∗(Ax+Bu)

Suppose the optimal state value function is V ∗(x) = xTPx where P is the stabilizing
solution for the Riccati equation. Then we can solve Q∗ by revoking its relation with
V ∗:

Q∗(x, u) = xTQx+ uTRu+ (Ax+Bu)TP (Ax+Bu) (10.12)

=

[
x
u

]T [
Q+ ATPA ATPB
BTPA R +BTPB

] [
x
u

]
(10.13)

10-4

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

2. Obtaining Optimal Policy from Q∗: As discussed in the class, a big advantage of
the state-action value function is that one can obtain the optimal policy from the op-
timal state-action value function directly without using the model information (A,B).
Suppose we have a positive semidefinite quadratic optimal Q-function:

Q∗(x, u) =

[
x
u

]T [Q∗11 Q∗12
(Q∗12)T Q∗22

] [
x
u

]
Minimizing the above quadratic function over u gives the optimal action u∗ = −(Q∗22)−1(Q∗12)Tx.
Hence the optimal policy is K∗ = −(Q∗22)−1(Q∗12)T. One can clearly see that K∗ can be
directly calculated from Q. As a sanity check, from (10.12) we know Q∗22 = R+BTPB
and Q∗12 = ATPB. Hence , we have K∗ = −(Q+KTRK)−1BTPA, which is consistent
with the result in the last lecture.

3. Optimal Bellman Equation: The optimal Bellman equation for Q∗ is formulated
as

Q∗(x, u) = xTQx+ uTRu+ min
u′
Q∗(Ax+Bu, u′)

= xTQx+ uTRu+Q∗
(
Ax+Bu,−(Q∗22)−1(Q∗12)T(Ax+Bu)

)
which eventually leads to the following equation:[
Q∗11 Q∗12

(Q∗12)T Q∗22

]
=

[
Q 0
0 R

]
+[

A B
−(Q∗22)−1(Q∗12)TA −(Q∗22)−1(Q∗12)TB

]T [Q∗11 Q∗12
(Q∗12)T Q∗22

] [
A B

−(Q∗22)−1(Q∗12)TA −(Q∗22)−1(Q∗12)TB

]
4. Value Iteration for Q-Factor: The algorithm is initialized at (Q0

11,Q0
12,Q0

22) and
then iterated as:[
Qn+1

11 Qn+1
12

(Qn+1
12)T Qn+1

22

]
=

[
Q 0
0 R

]
+[

A B
−(Qn22)−1(Qn12)TA −(Qn22)−1(Qn12)TB

]T [Qn11 Qn12
(Qn12)T Qn22

] [
A B

−(Qn22)−1(Qn12)TA −(Qn22)−1(Qn12)TB

]
5. Policy Iteration for Q-Factor: At every step n, we first solve the Q Bellman

equation to obtain (Qn11,Qn12,Qn22) (the policy evaluation step), and then update the
policy as Kn+1 = −(Qn22)−1(Qn12)T (the policy improvement step).

10.2.2 LQR with Process Noise

In this case, the dynamics become

xt+1 = Axt +But + wt (10.14)

10-5

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

where wt is an IID Gaussian noise. Given a policy K, we can calculate the Q-function as

Q(x, u) = x>Qx+ u>Ru+ γEV (Ax+Bu+ w)

= x>Qx+ u>Ru+ γE(Ax+Bu+ w)TPK(Ax+Bu+ w) + γrK

= x>Qx+ u>Ru+ γ(Ax+Bu)TPK(Ax+Bu) + γ(E(wTPKw) + rK)

=

[
x
u

]T [
Q+ γATPKA γATPKB
γBTPKA R + γBTPKB

] [
x
u

]
+ rK

We can also directly parameterize Q(x, u) as

Q(x, u) =

[
x
u

]T [Q11 Q12

QT
12 Q22

] [
x
u

]
+ rK

Notice V (x) = Q(x,−Kx). Therefore, we can substitute this into the above equation to
obtain the Bellman equation for Q:

Q(x, u) = x>Qx+ u>Ru+ γEQ (Ax+Bu+ w,−K(Ax+Bu+ w))

which is equivalent to[
Q11 Q12

QT
12 Q22

]
=

[
Q 0
0 R

]
+ γ

[
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

]
rK = γE

[
w
−Kw

]T [Q11 Q12

QT
12 Q22

] [
w
−Kw

]
+ γrK

The PI algorithm is the same. We first solve theQ Bellman equation to obtain (Qn11,Qn12,Qn22)
(the policy evaluation step), and then update the policy as Kn+1 = −(Qn22)−1(Qn12)T (the
policy improvement step).

Therefore, if we have a data-driven method to estimate the Q function for any stabilizing
policy, then we can implement PI in a model-free manner. One way to estimate Q function
from data is to apply the LSTD-Q. Just to give you a rough idea, here is how LSTD-Q works
in the 2D case.

LSTD algorithm for estimating Q from data. Suppose x =

[
a
b

]
and ut is a scalar.

The feature can be calculated as

φ(x, u) =



a2

ab
b2

au
bu
u2

1


10-6

ECE 598 Lecture 10 — 10/06/2020 Fall 2020

The Q function can be parameterized as

Q(x, u) = θ>φ(x, u) =
[
q1 q2 q3 q4 q5 q6 r

]


a2

ab
b2

au
bu
u2

1


=

ab
u

>  q1 1
2
q2

1
2
q4

1
2
q2 q3

1
2
q5

1
1
q4

1
2
q5 q6

ab
u

+ r

Now we need to fit a 7-dimensional vector θ. We just generate a trajectory of {xt, ut}Tt=0

using xk+1 = Axk + Buk + wk and uk = −Kxk + vk. Here vk is some noise added for
exploration. We fit θ to minimize the target difference error as

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1,−Kxt+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)
Notice typically we do not estimate θ as

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1, ut+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)
The above estimation only works when the exploration noise is some reasonable Gaussian
noise. For general exploration noise vk, we use the estimation

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1,−Kxt+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)
Notice vk should be large enough to explore the space thoroughly. For our problem, you can
start by trying uniform noise from [−500, 500] or Gaussian noise N (0, 100I). You should try
various exploration noise to figure out which one works best. Similarly, you can also generate
(xt, ut) completely randomly for all t. Here ut can be completely random, and does not need
to be generated from policy K. For example, use a uniform distribution over [−1000, 1000]
to generate (xt, ut). For all t, generate x′t as x′t = Axt +But + wt. now estimate θ as

θ ≈

(
T∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(x′t,−Kx′t))>
)−1(T∑

t=0

c(xt, ut)φ(xt, ut)

)
The above implementation is super efficient for policy iteration. You just generate the
sampled data {xt, ut, x′t} once. Then for all K, you can use the same data to estimate θ by
renewing the calculations of φ(x′t,−Kx′t). This makes LSPI sample efficient.

10-7

