
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 11
Temporal Difference Learning

Lecturer: Bin Hu, Date:10/08/2020-10/15/2020

In this lecture, we discuss how to evaluate a given policy when the model is unknown.
The main method here is the temporal difference learning.

11.1 Discrete Space Case

Recall that a MDP is defined by a tuple 〈S,A, P, R, γ〉 where S is the state space, A is the
action space, P is the transition kernel, R is the reward, and γ is the discount factor. Given
a policy π, we want to analyze the associated value function:

V π(s) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0 = s

]
.

Suppose both S and A are finite. Let V π be the value function of π. If we use the
following vector notation:

V π =

V π(1)
V π(2)

...
V π(n)

 , R̄π =

R̄π(1)
R̄π(2)

...
R̄π(n)

 , P π =

P
π(1)
11 · · · P

π(1)
1n

...
. . .

...

P
π(n)
n1 · · · P

π(n)
nn

then we can rewrite the Bellman equation as

V π = R̄π + γP πV π. (11.1)

How to solve the above equation when we do not know P π? Here is the basic idea of
TD learning. Suppose we are using an iterative method and estimate the value function as
V π
k at step k. We sample the trajectory of the underlying Markov chain as {sk}. Based on

the Bellman equation, V π(sk) can be estimated in two ways: either V π
k (sk) or r(sk, π(sk)) +

γV π
k (sk+1) (this is called TD target). One reasonable way to do things is to minimize the

difference of these two things: (V π
k (sk) − r(sk, π(sk)) − γV π

k (sk+1))
2. How to make this

difference small? Averaging!

V π
k+1(sk) = (1− ε)V π

k (sk) + ε(r(sk, π(sk)) + γV π
k (sk+1))

= V π
k (sk) + ε (r(sk, π(sk)) + γV π

k (sk+1)− V π
k (sk))

Denote δk = r(sk, π(sk)) + γV π
k (sk+1)− V π

k (sk). The term δk is the so-called TD error. The
above algorithm is called TD(0). Usually ε is small, and this means that we do not want to
make too much change for a given random sample point.

11-1

ECE 598 Lecture 11 — 10/08/2020-10/15/2020 Fall 2020

TD(λ). An extension which interpolates TD(0) and Monte Carlo method is TD(λ). We
briefly review the idea here. TD(0) just interpolates V π

k (sk) and the one-step expansion
r(sk, π(sk)) + γV π

k (sk+1). The generalized m-step TD learning interpolates V π
k (sk) with

the m-step expansion G
(m)
k := r(sk, π(sk)) + γr(sk+1, π(sk+1)) + γ2r(sk+2, π(sk+2)) + . . . +

γmV π
k (sk+m). Monte-Carlo simulation can be viewed as G

(∞)
k . One issue is how to choose

m. The idea of TD(λ) is that we can avoid choosing m and simply interpolates V π
k (sk) with

a weighted sum of G
(m)
k for all m:

V π
k+1(sk) = (1− ε)V π

k (sk) + ε(1− λ)
∞∑
m=1

λm−1G
(m)
k

This is a forward update which is hard to implement. Hence we need to convert it to a
backward scheme. In the backward setup, instead of waiting for what is going to happen
in the future, we will remember what happened in the past and use all past information
together. Therefore, we interpolate V π

k (sk) with something that can capture all the past
information. To do this, we introduce the eligibility traces ek(s) = γλek−1(s) + 1(sk = s)
and TD(λ) updates as V π

k+1(s) = V π
k (s)+εδkek(s). The backward view and the forward view

are equivalent, providing different intuitions of TD(λ).

Function approximation. Now we talk about the function approximation case. Suppose
n is too large and we do not want to learn an n-dimensional vector for V π. Instead, we
estimate V π(s) ≈ θTφ(s) where φ is the feature vector. Here, after we get a sample trajectory,
what shall we do? We can try to minimize 1

2
‖θTφ(sk)−r(sk, π(sk))−γθTk φ(sk+1)‖2. However,

we do not want to completely solve this problem since we do not want to trust one sample
point too much. Instead, we can perform one step gradient descent as

θk+1 = θk + ε
(
r(sk, π(sk)) + γθTk φ(sk+1)− θTk φ(sk)

)
φ(sk)

Again, we have TD error δk = r(sk, π(sk))+γθTk φ(sk+1)−θTk φ(sk). The derivations of TD(λ)
with linear function approximation is introduced in Section 2.4.1 in [1]. Again, we will use
the backward view and the update rule is given as zk = λγzk−1+φ(sk) and θk+1 = θk+εδkzk.
This is equivalent o

θk+1 = θk + εkδk

k∑
t=0

(λγ)tφ(sk−t)

We can clearly see that all the past information is somehow weighted.

Asymptotic analysis v.s Finite sample analysis. Several theoretical guarantees of TD
learning can be proved. For illustrative purposes, let’s look at TD(0). Notice TD(0) can
be modeled as a linear stochastic approximation scheme θk+1 = θk + ε(Aikθk + bik) where
ik is the augmented vector of (sk+1, sk). As ε → 0, we will have an ODE to model its

11-2

ECE 598 Lecture 11 — 10/08/2020-10/15/2020 Fall 2020

asymptotic dynamics: θ̇ = Āθ + b̄ where Ā and b̄ are some averaged quantities. Based on
the so-called ODE approach, the asymptotic convergence of TD(0) with diminishing step
size can be guaranteed by the stability of this ODE and several extra technical conditions.
More recently, the finite sample bound is studied. This is a more technical topic, and there
are still a lot of research activities going on here.

Off policy vs. on policy. The above method is on policy since the data has to be sampled
using the policy π. Sometimes we do not use to directly use π to gather data since that may
be dangerous. Then we will use off-policy methods. In off-policy TD learning, the data is
sampled from a behavior policy µ. Then importance sampling trick is used to evaluate the
value function of the target policy π using the data generated by the behavior policy µ. What
is importance sampling? Originally important sampling is used in rare event simulations to
sample “important but rare” events. Just imagine X ∼ N (0, 1) and one wants to estimate
P (X > 10) = E1X>10 using Monte Carlo simulations. Since it is extremely unlikely to get
a sample with X > 10, the Monte Carlo simulation may just return 0. Suppose f(x) is the
density function for N (0, 1) and g(x) is the density function for N (10, 1). Then importance
sampling uses the following reformulation:

E1X>10 =

∫ ∞
−∞

1X>10f(x)dx =

∫ ∞
−∞

1X>10
f(x)

g(x)
g(x)dx

Now we can sample X from N (10, 1) and average the quantity 1X>10
f(x)
g(x)

. Clearly by doing
this, we see the event X > 10 much more often, and this is exactly the idea of importance
sampling. Here the ratio of the two densities is called importance sampling ratio. Off-policy
TD learning uses a similar idea, and requires using the importance sampling ratio between
π and µ. To study some details of off-policy TD learning, see Sections 2-4 in [2].

Online vs. Off-line: Least square methods. TD(0) and TD(λ) are online methods.
When a new data point sk is observed, the weight θk is updated and then the data point
sk is completely thrown away after this update. How to make more efficient use of data?
If all the data are available, then we can use off-line methods. For example, when the
linear approximation is used, we can apply the least square method to fit θ directly. If we
look at the recursive formula for TD(0), eventually the method will converge if the term(
r(sk, π(sk)) + γθTk φ(sk+1)− θTk φ(sk)

)
φ(sk) is roughly 0. Therefore, we want to choose θ to

have

φ(sk) (φ(sk)− γφ(sk+1)) θ ≈ φ(sk)r(sk, π(rk)), ∀k

This becomes a least square problem. We can just choose A =
∑

k φ(sk) (φ(sk)− γφ(sk+1))
and b =

∑
k φ(sk)r(sk, π(rk)). Then we fit θ as θ = A−1b. When A is not invertible, we can

use pseudo inverse. We can add regularization or eligibility trace into the algorithm. Details
are omitted.

11-3

ECE 598 Lecture 11 — 10/08/2020-10/15/2020 Fall 2020

Neural network as the function approximators. For practical problems, typically we
will use neural networks to approximate the value function, i.e. V π(s) = W (1)σ(W (0)φ(s)).
For simplicity, we augment all the weights as θ, and use the notation V π(s) = fθ(s). Again,
the goal here is to find θ. At every step of TD(0), we can try to minimize the following
function.

1

2
‖fθ(sk)− r(sk, π(sk))− γfθk(sk+1)‖2

Again, we do not want to trust one data point too much and hence just do one step gradient
descent as

θk+1 = θk + ε (r(sk, π(sk)) + γfθk(sk+1)− fθk(sk))∇θfθk(sk)

We denote the TD error as δk = r(sk, π(sk)) + γfθk(sk+1)− fθk(sk) and then the TD(0) just
iterates as θk+1 = θk−εδk∇θfθk(sk). Again, such an online method is not efficient in making
use of all the data. In addition, the use of the neural network may introduce some stability
issue for training. A better way to fit θ is to use a supervised learning framework. The
idea is similar to fitted Q-iteration. Now the data collection is decoupled from the algorithm
iteration. Suppose {sk} has been sampled. At every step l, we solve the following finite-sum
optimization

θl+1 = arg min
θ

∑
k

1

2
‖fθ(sk)− r(sk, π(sk))− γfθl(sk+1)‖2

For simplicity, we denote y
(l)
k = r(sk, π(sk)) + γfθn(sk+1). Then at every l, we are exactly

solving a supervised learning problem and try to minimize the finite-sum function∑
k

1

2
‖W (1)

n σ(W (0)
n φ(sk))− y(l)k ‖

2.

This problem can be efficiently solved by SGD/ADAM and standard routines in TensorFlow
or PyTorch.

11.2 Continuous space case

Now we discuss the continuous control case. Again, we start from the LQR problem. Obvi-
ously we can use the linear function approximation for the value function in this case.

Let’s consider a 2D example. Suppose x =

[
a
b

]
and ut is a scalar. The feature can be

calculated as

φ(x) =

a2

ab
b2

1

11-4

ECE 598 Lecture 11 — 10/08/2020-10/15/2020 Fall 2020

The state value function is parameterized as

V (x) = θ>φ(x) =
[
p1 p2 p3 r

]
a2

ab
b2

1

 =

[
a
b

]> [
p1

1
2
p2

1
2
p2 p3

] [
a
b

]
+ r

Now we want to fit {p1, p2, p3, r} from sampled data. We just generate a trajectory of {xt}Tt=0

using xt+1 = (A−BK)xt + wt. We fit θ to minimize the target difference error.

TD(0). Again, we can apply the update θt+1 = θt+ε
(
c(xt) + γθTt φ(xt+1)− θTt φ(xt)

)
φ(xt)

where c(xt) = x>t (Q+K>RK)xt. Unfortunately, such an online method does not work well.

LSTD. LSTD fits θ by enforcing(
T−1∑
t=0

φ(xt)(φ(xt)− γφ(xt+1))
>

)
θ ≈

T−1∑
t=0

c(xt)φ(xt)

So we just estimate θ as

θ ≈

(
T−1∑
t=0

φ(xt)(φ(xt)− γφ(xt+1))
>

)−1(T−1∑
t=0

c(xt)φ(xt)

)

Sometimes the inverse does not exist and we can replace it with pseudo inverse. In Matlab,
you can use pinv to calculate pseudo inverse. The above implementation requires the noise wt
to provide sufficient exploration. If the noise is too small, it will require a huge T to make the
above implementation work. In this case, you can use another implementation. Generate
xt randomly for all t using some distribution which explores the state space thoroughly.
For example, use a uniform distribution over [−1000, 1000]. For all t, generate x′t as x′t =
(A−BK)xt + wt. Now estimate θ as

θ ≈

(
T∑
t=0

φ(xt)(φ(xt)− γφ(x′t))
>

)−1(T∑
t=0

c(xt)φ(xt)

)

You can try different distribution to generate xt to see which one explores best.

Nonlinear case. For general nonlinear problems, one can use neural networks to param-
eterize the value function, and then apply the supervised learning framework introduced in
the last section to fit the weights.

11-5

ECE 598 Lecture 11 — 10/08/2020-10/15/2020 Fall 2020

11.3 Summary and Plan

One can see that the basic idea of TD learning is to fit the value function by enforcing the left
and right sides of the Bellman equation to be roughly equal to each other on the observed
data. A similar idea can be used to find the optimal Q function. One can try to fit the
optimal value function by enforcing the left and right sides of the optimal Bellman equation
to be roughly equal to each other on the observed data. This is the idea behind value-based
reinforcement learning methods. The issue here is how to generate the data. We will talk
about this in next lecture.

Another big class of RL methods are the so-called policy-based methods. Intuitively, one
can directly parameterize the policy and do gradient descent on the policy. The issue here
is how to estimate the policy gradient from data when the model is not known. We will also
discuss this in future lectures.

11-6

Bibliography

[1] C. Dann, G. Neumann, and J. Peters. Policy evaluation with temporal differences: A
survey and comparison. Journal of Machine Learning Research, 15(1):809–883, 2014.

[2] R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research,
17(1):2603–2631, 2016.

7

