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Lecture 12
Value-Based RL Methods

Lecturer: Bin Hu, Date:10/20/2020

There are two main ways to solve the optimal policy for a given MDP. We can either learn
the optimal @ function (value iteration) or iterate on the policy space directly (approximate
policy iteration). In this lecture, we will follow the first idea and discuss how to estimate
the optimal () function from data when the model is unknown. We will talk about a few
popular value-based RL methods including )-learning, SARSA, and fitted Q-iteration.

@-learning can be viewed as the data-driven implementation of value iteration on Q-
factors. In TD learning, we try to fit the value function to enforce the left and right sides of
the Bellman equation to be roughly equal on observed data. In Q)-learning, we try to fit the
value function to enforce the left and right sides of the optimal Bellman equation to be
roughly equal on observed data.

Recall that a MDP is defined by a tuple (S, A, P, R,~) where S is the state space, A is
the action space, P is the transition kernel, R is the reward, and ~ is the discount factor.
The optimal Bellman equation is given as

Q*(s,a) = R™(s,a) —|—VZ /II}aXQ (s',a) (12.1)

s'eS

How to solve the above equation when we do not know P¢,? We can extend the averaging
idea in TD learning. Suppose we are using an iterative method and estimate (Q* as ()i at
step k. Suppose we use some behavior policy which can provide sufficient exploration and
obtain a sample trajectory {(sx, ax)} where ay is generated using the behavior policy. Based
on the optimal Bellman equation, Q*(sg, ax) can be estimated in two ways: either Qg (s, ax)
or 7(sk, ar) +ymaxyea Qr(Sk+1,a’). Similar to TD(0), we can try to minimize the difference
of these two things, and average them as

Qr+1(sk; ax) = (1 — &)Qr(sk, ar) +¢ (T(Sk, ax) + Y max Qr(Sk11, a/))
= Qr(sk,ar) +¢ (T(Sk, ax) + Y max Qr(5k41,a") — Qr(sk, ak))

The calculation of max, e 4 Qr(Sk+1,a’) requires using the information of @ and sx4;. The
above algorithm is )-learning. Usually ¢ is small, and this means that we do not want to
make too much change for a given random sample point. To make ()-learning work, the
behavior policy has to provide sufficient exploration: all the state-action pairs should be
visited infinitely often! This is the key requirement on the behavior policy.

12-1



ECE 598 Lecture 12 — 10/20/2020 Fall 2020

On-policy vs. off-policy. @Q-learning adopts a prescribed behavior policy and hence is
an off-policy method. No matter how a’ is calculated, it is not going to change the sample
data at all. In contrast, SARSA is an on-policy method which uses the followings iteration

Qr+1(5k, ar) = Qr(Sk, ar) + € (r(Sk, ar) + YQr(Skt1, Ary1) — Qi (Sk, ar))

where a1 is calculated as argmaxgeq Qr(Sgr1,a’) with (1 — &) probability and chosen
randomly with e probability. This is called e-greedy sampling. The difference here is that
the sample data is generated using (). Hence SARSA is an on-policy method. There are
also ways to interpolate QQ-learning and SARSA. For example, one can update the behavior
policy once awhile by using the e-greedy policy associated with the current Q).

Function approximation. Now we talk about the function approximation case. Suppose
n is too large and we do not want to learn an n-dimensional vector for QQ*. Instead, we
estimate Q*(s,a) ~ 07¢(s,a) where ¢ is the feature vector. Here, after we get a sam-
ple trajectory, what shall we do? We can try to minimize 3|07 ¢(sy, ar) — r(sk, ar) —
ymaxy 0 ¢(spi1,a’)||?>. However, we do not want to completely solve this problem since
we do not want to trust one sample point too much. Instead, we can perform one step
gradient descent as

Opt1 =0k +¢ <7’(Sk, ax) + 7y max O G(s141,0') — Oy b (s, ak)) o (sk, ar)
For SARSA, we can have

Ors1 = Ok + € (7(sk, ar) + V0L O(Sks1, ) — Of (i, ar)) G5k, ar,)

where ap,1 is generated using the e-greedy policy associated with Q). We can also intro-
duce eligibility trace z = Ayzx_1 + ¢(sg, ax) and then update 0y Oy 1 = O + e(r(sg, ax) +
VOF d(Ska1, apr1) — OF d(Sk, ax))zx. This SARSA()N) method uses all the past information to
update 0.

Online vs. Off-line: Fitted Q-iteration. @-learning and SARSA are online methods.
When a new data point (si,a) is observed, the weight 6 is updated and then the data
point is thrown away. How to make more efficient use of data? If all the data are available,
then we can use off-line methods. For example, when the linear approximation is used, we
can apply the least square method to fit 6 directly. This method is the fitted Q-iteration.
Now the data collection is decoupled from the algorithm iteration. Suppose {(sg,ax)} has
been sampled. At every step [, we solve the following finite-sum optimization

, 1
0141 = arg melnz §H9T¢(3ka ax) — 7 (sk; ax) — ymax 0 ¢(sp41, )|
k

12-2



ECE 598 Lecture 12 — 10/20/2020 Fall 2020

For simplicity, we denote y,gl) = r(sp,ax) + ymaxy 0] ¢(sgy1,a’). Then at every [, we are

exactly solving an least square problem and try to minimize the finite-sum function
1 I
> Sl ol ax) — I
k

This problem can be efficiently solved by SGD/ADAM or even in closed-form (by inverting
matrix). The above method is different from LSTD-@) which is used to evaluate a value
function for a given policy. Since the Bellman equation for ()-factors is still linear, hence one
only needs to solve one least square problem to fit the ()-function for a given policy. Here, to
find the optimal @) function, the nonlinear maximization is involved and we needs to apply
the lease square method in a recursive manner.

Neural network as the function approximators. For practical problems, typically we
will use neural networks to approximate the @ function, i.e. Q*(s,a) = Wa(W©O¢(s, a)).
For simplicity, we augment all the weights as 6, and use the notation V™ (s,a) = fy(s,a).
Again, the goal here is to find 6. At every step, we can try to minimize the following function.

1
S fo(sk, an) = 7(sk, ax) — vy max fo, (sk+1, a’)|”

Again, we do not want to trust one data point too much and hence just do one step gradient
descent as

Oks1 =0k +¢ <7’(8k, ax) + 7y max for (b1, 0") — fo, (s, ak)) Vo fo,(sk, ax)

We may try similar idea for SARSA. Unfortunately, for deep neural networks, this type of
implementations does not work. Two tricks are needed, i.e. the experience replay and the
frozen target. See the original paper by Mnih et al. for more details on the development of

DQN.
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