
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 13
Policy-Based RL Methods

Lecturer: Bin Hu, Date:10/22/2020-10/29/2020

In the last lecture, we have talked about value-based RL methods including Q-learning,
SARSA, fitted Q-iteration, and DQN (with experience replay). Those methods try to fit the
optimal Q function to enforce the left and right sides of the optimal Bellman equation to
be roughly equal to each other on data. Sometimes these methods have stability issues for
continuous control problems. For example, the ε-greedy policy for certain Qk may destabilize
the system and the learning will fail. For continuous control tasks with stability concerns,
we can use policy-based RL methods which incrementally update the policy without desta-
bilizing the closed-loop dynamics. In this lecture, we will cover several popular policy-based
RL methods.

There are many different types of policy-based RL methods, e.g. REINFORCE, Actor-
Critic, natural policy gradient, TRPO, PPO, ACTKR, SAC, SVPG, etc. The basic idea
is that we parameterize the policy and then perform gradient-based optimization on these
policy parameters using data.

To illustrate the idea of policy gradient methods, let’s look at the LQR problem first.
Again, consider the following linear dynamical system

xt+1 = Axt +But (13.1)

with the quadratic cost:

C = Ex0∼D
∞∑
t=0

(xTt Qxt + uTt Rut) (13.2)

where Q and R are positive definite matrices. Let Σ0 be the covariance matrix of x0.
To apply policy gradient methods, we first need to parameterize the policy. For LQR, it

is known that a state-feedback linear controller can achieve the optimal performance. Hence
we can just confine the policy search to linear state-feedback policies, ut = −Kxt. Now the
cost becomes a function of K. We have

C(K) = Ex0∼D
∞∑
t=0

xTt (Q+KTRK)xt (13.3)

In principle, we can just think the above function as an objective function and K as
decision variables. This allows us to formulate the LQR problem as an optimization problem

min
K
C(K)

13-1

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

We can then apply various gradient-based methods to find the optimal policy. For example,
we can apply the gradient descent method, i.e.

Kl+1 = Kl − α∇C(Kl)

We can also try Newton’s method, Gauss-Newton method, trust region methods or other
types of faster methods.

If we know (A,B,Q,R), then we can calculate both C(K) and ∇C(K) in closed-form.
Specifically, we know C(K) can be calculated as trace(PKΣ0) by solving the following Bellman
equation (Lyapunov equation)

PK = Q+KTRK + (A−BK)TPK(A−BK) (13.4)

A useful result from control theory states that the gradient ∇C(K) can be calculated as

∇C(K) = 2((R +BTPKB)K −BTPKA)ΣK (13.5)

where ΣK =
∑∞

t=0 E(xtx
T
t) =

∑∞
t=0(A−BK)tΣ0((A−BK)T)t. There are several proofs for

this result. We present one proof here. We can take the total derivative of both sides of the
Bellman equation to get

dPK = d(KTRK) + d
(
(A−BK)TPK(A−BK)

)
By the chain rule, we have

dPK

=dKTRK +KTRdK + (A−BK)TdPK(A−BK)− dKTBTPK(A−BK)− (A−BK)TPKBdK

=dKT
(
(R +BTPKB)K −BTPKA

)
+
(
KT(R +BTPKB)− ATPKB

)
dK + (A−BK)TdPK(A−BK)

If we view dPK as the variable, the above is a Bellman equation which can be solved as

dPK =
∞∑
t=0

((A−BK)T)t(dKTEK + ET
KdK)(A−BK)t

where EK = (R + BTPKB)K − BTPKA. By definition, we have dC(K) =
∑

i,j
∂C
∂Kij

dKij =

trace(∇C(K)dKT). Since C(K) = trace(PKΣ0), it is also straightforward to show (you
should verify this step by yourself)

dC(K) = trace(dPKΣ0) = trace(2EKΣKdK
T)

Therefore, we have ∇C(K) = 2EkΣK . Based on the gradient formula, three algorithms can
be used:

• Policy gradient: Kl+1 = Kl − α∇C(Kl)

13-2

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

• Natural policy gradient: Kl+1 = Kl − α∇C(Kl)Σ
−1
Kl

= Kl − 2α((R + BTPKlB)Kl −
BTPKlA)

• Gauss-Newton: Kl+1 = Kl − 2α(Kl − (R + BTPKlB)−1BTPKlA). When α = 1
2
, the

Gauss-Newton method exactly becomes the policy iteration method.

If the model is unknown, then we need to estimate ∇C(Kl) from data, and that is the
basic idea of the policy-based RL. This is different from value-based RL methods where we
parameterize the optimal Q function and then try to fit it. Here we parameterize the policy
and try to iterate on the policy space to obtain a good policy.

We can also try to estimate ΣK and then implement the natural policy gradient method.
The Gauss-Newton method with α = 1

2
can also be implemented in a data-driven manner

by using Least Square Policy Iteration (LSPI).

How to estimate ∇C(K) from data? There is a famous result: policy gradient theorem.
This theorem can be used to estimate the policy gradient directly. Notice that policy gradient
theorem requires the policy to be stochastic so that we can explore the space. Denote the
policy parameter as θ. Now we discuss various versions of the policy gradient theorem.

Warm-up: Policy Gradient Theorem V0. To make things simple, we first use a large
N to approximate the infinite horizon. Therefore, we consider

C(θ) = E
N∑
t=0

γtc(xt, ut) (13.6)

Clearly the joint density of (x0, u0, x1, u1, x2, u2, . . . , xN , uN) depends on θ and we denote
this density as fθ. By definition, we have

Ec(xt, ut) =

∫
c(xt, ut)fθ(x0, u0, x1, u1, x2, u2, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

Hence we can take gradient on both sides to show

∇θEc(xt, ut) =

∫
c(xt, ut)∇θfθ(·)dx0du0dx1du1 . . . dxNduN

=

∫
c(xt, ut)

∇θfθ(·)
fθ(·)

fθ(x0, u0, x1, u1, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

=

∫
c(xt, ut)∇θ log fθ(·)fθ(x0, u0, x1, u1, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

= E [c(xt, ut)∇θ log fθ(·)]

In addition, we have

log fθ(x0, u0, . . . , xN , uN)

= log πθ(uN |xN) + log p(xN |xN−1, uN−1) + log πθ(uN−1|xN−1) + log p(xN−1|xN−2, uN−2) + . . .

13-3

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

After taking gradients, we have

∇θ log fθ(x0, u0, . . . , xN , uN) =
N∑
t=0

∇θ log πθ(ut|xt)

Putting things together, we have

∇C(θ) =
N∑
t=0

γtE

[
c(xt, ut)

N∑
k=0

∇θ log π(uk|xk)

]

= E

[(N∑
t=0

γtc(xt, ut)
)(N∑

k=0

∇θ log π(uk|xk)
)]

The above is the most naive version of the policy gradient theorem. It states that we can
estimate the policy gradient by sampling the cost sequence and calculating ∇θ log π(ut|xt).

How to calculate∇θ log πθ(ut|xt)? When applying the policy gradient theorem, a stochas-
tic policy has to be used. The noise is injected into the gradient for exploration purpose. For
example, consider a LQR problem where one can confine the policy search to linear policies,
i.e. ut = −Kxt. However, to apply the policy gradient theorem, noise has to be injected into
the policy, and hence one typically use a Gaussian policy, i.e. ut ∼ N (−Kx, σI). Basically
we just add zero-mean Gaussian noise to the control input −Kxt. How can we calculate
∇θ log πθ(ut|xt) for such a Gaussian policy? Suppose σ is fixed. First notice K is a matrix.
Hence ∇θ log πθ is also a matrix. The (i, j)-th entry of this matrix is just

∂ log πθ
∂Kij

= −σ−1(u(i)t +
nx∑
p=1

Kipx
(p)
t)x

(j)
t

where the superscript (i) denotes the i-th entry of the vector. More compactly, we can write
∇θ log πθ(ut|xt) = −(σI)−1(ut +Kxt)x

T
t .

Neural Network Policy. For complicated tasks, we typically use neural network to pa-
rameterize the policy. For example, we can use a two-layer neural network to parameterize
the Gaussian policy, i.e. ut ∼ N (W 1σ(W 0xt), σI) where σ is the elementwise activation.
How to calculate ∇θ log πθ(ut|xt) for such a policy? The derivative with respect to W 1 can
be directly calculated as

∂

∂W 1
log πθ(ut|xt) = σ−1(ut −W 1h(W 0xt))(h(W 0xt))

T

The derivative with respect to W 0 requires a backpropagation step and can be calculated
as

∂

∂W 0
log πθ(ut|xt) = σ−1(W 1 diag(h′(W 0xt)))

T(ut −W 1h(W 0xt))x
T
t

13-4

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

where diag(h′(W 0xt)) is a diagonal matrix whose (i, i)-th entry is equal to the i-th entry of
the vector h′(W 0xt). In general, back propagation can be used to efficiently calculate the
term ∇θ log πθ(ut|xt) when a neural network policy is used. Such operations are available in
PyTorch or TensorFlow.

REINFORCE: Policy Gradient Theorem V1. The gradient estimator introduced
above is noisy and has high variance. Now we discuss an improved version of the policy
gradient theorem. Let us directly address the infinite horizon problem, i.e.

C(θ) = E
∞∑
t=0

γtc(xt, ut)

Notice the process is causal, i.e. (xt, ut) do not depend on the states/actions in the future.
To calculate Ec(xt, ut), we only need the joint density of (x0, u0, x1, u1, . . . , xt, ut). Hence we
have

Ec(xt, ut) =

∫
c(xt, ut)fθ(x0, u0, x1, u1, x2, u2, . . . , xt, ut)dx0du0dx1du1 . . . dxtdut

After applying similar tricks, we can show

∇θEc(xt, ut) = E

[
c(xt, ut)

t∑
k=0

∇θ log πθ(uk|xk)

]

To see what happens when we sum all terms, we write out the first few term explicitly:

∇θEc(x0, u0) = E [c(x0, u0)∇θ log πθ(u0|x0)]
γ∇θEc(x1, u1) = E [γc(x1, u1)∇θ log πθ(u0|x0)] + E [γc(x1, u1)∇θ log πθ(u1|x1)]
γ2∇θEc(x2, u2) = E

[
γ2c(x2, u2)∇θ log πθ(u0|x0)

]
+ E

[
γ2c(x2, u2)∇θ log πθ(u1|x1)

]
+E

[
γ2c(x2, u2)∇θ log πθ(u2|x2)

]
Based on the above pattern, we can get

∇C(θ) = E
∞∑
t=0

[(∞∑
k=t

γkc(xk, uk)
)
∇θ log πθ(ut|xt)

]

= E
∞∑
t=0

[
γt
(∞∑
k=t

γk−tc(xk, uk)
)
∇θ log πθ(ut|xt)

]

which gives an improved version of the policy gradient theorem. The algorithm REINFORCE
is actually based on the above gradient formula.

13-5

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

Baseline In the actual implementation of REINFORCE, a baseline is introduced based on
the following key fact:

E [b(xt)∇θ log πθ(ut|xt)] =

∫
b(xt)∇θπθ(ut|xt)p(xt)dxtdut

= ∇θ

∫
b(xt)(

∫
πθ(ut|xt)dut)p(xt)dxt

= ∇θ

∫
b(xt)p(xt)dxt

= 0

Therefore, the following policy gradient formula also holds

∇C(θ) = E
∞∑
t=0

[
γt
(∞∑
k=t

γk−tc(xk, uk)− b(xt)
)
∇θ log πθ(ut|xt)

]
As long as the baseline does not depend on ut, the formula works. In REINFORCE, we just
choose b(xt) as the average of

∑∞
k=t γ

k−tc(xk, uk) in the previous rollouts. In this case, the
baseline is a constant.

Actor-Critic: Policy Gradient Theorem V2. We can further twist the above gradient
formula. Based on some basic property of conditional expectation, we have

E

[(∞∑
k=t

γk−tc(xk, uk)
)
∇θ log πθ(ut|xt)

]
= E

[
E
[∞∑
k=t

γk−tc(xk, uk)∇θ log πθ(ut|xt)
∣∣xt, ut]]

= E

[
E
[∞∑
k=t

γk−tc(xk, uk)
∣∣xt, ut]∇θ log πθ(ut|xt)

]
= E [Qπ(xt, ut)∇θ log πθ(ut|xt)]

Therefore, we can substitute the above formula to show

∇C(θ) = E
∞∑
t=0

[
γtQπ(xt, ut)∇θ log πθ(ut|xt)

]
In the AC algorithm, we use data to simultaneously estimate Q and ∇C(θ). We can also
subtract the state value function as a baseline and get

∇C(θ) = E
∞∑
t=0

[
γt(Qπ(xt, ut)− V π(xt))∇θ log πθ(ut|xt)

]
The function (Qπ(xt, ut) − V π(xt)) is called the advantage function Aπ(xt, ut). Another
popular way to implement AC is to estimate the advantage function using TD residual
c(xt, ut) + γV π(xt+1)− V π(xt) and hence the critic is used to estimate V π whose dimension
is much lower than Qπ. In general, the critic step relies on some TD learning technique to
estimate the value function, and then the actor step makes use of such value estimations to
update the policy gradient.

13-6

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

Summary of Policy Gradient Theorem. Here is the key take-away. Based on the
policy gradient theorem, for a discount MDP, we can estimate the policy gradient as

∇C(θ) = E
∞∑
t=0

[γtΨt∇θ log πθ(ut|xt)] (13.7)

Many options for Ψt are available. Popular options for Ψt include:

• Monte Carlo estimation:
∑∞

t′=t γ
t′−tct′

• Baselined versions of Monte Carlo estimation:
∑∞

t′=t(γ
t′−tct′ − b(xt))

• State-action value function: Qπ(xt, ut)

• Advantage function: Aπ(xt, ut)

• TD residual: ct + γV π(xt+1)− V π(xt)

• Generalized advantage estimation

Zeroth-order optimization. When using the policy gradient theorem, we inject noise
into the control actions for exploration purposes. Suppose now we want to directly learn
the gradient of a deterministic policy. Then we can use evolution strategies (or zeroth-order
optimization) which does not require stochastic policy. The exploration in zeroth-order
optimization is done by perturbing the policy randomly. Specifically, consider the following
estimation of the policy gradient:

∇C(K) ≈
Eε∼N (0,σ2I)C(K + ε)ε

σ2

To understand this update rule, we analyze a shifted variant of the above update:

g =
Eε∼N (0,σ2I)(C(K + ε)− C(K))ε

σ2
=

Eε∼N (0,I)(C(K + σε)− C(K))ε

σ
Roughly speaking, the above estimation shifts the original zeroth-order gradient estimate
with a zero mean vector and should not change the mean of the gradient estimator. Due to
the fact limσ→0

C(K+σε)−C(K)
σ

= (∇C(K))Tε, we can show:

Eε∼N (0,I)

(
lim
σ→0

C(K + σε)− C(K)

σ

)
ε = Eε∼N (0,I)(ε

T∇C(K))ε

= Eε∼N (0,I)ε(ε
T∇C(K))

= Eε∼N (0,I)(εε
T)∇C(K)

= ∇C(K)

Therefore, the zeroth-order optimization can be viewed as a stochastic version of the finite
difference method. Notice that zeroth-order optimization is general since it can address any
cost function. The drawback is that this approach is too general and does not exploit the
problem structure of MDPs. Hence the sample efficiency of zeroth-order optimization is not
very good.

13-7

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

Natural Policy Gradient. The problem with the policy gradient method is that it may
take too many steps. Another way to view the policy gradient method is that at every step
k, we approximate the cost function as

C(θ) ≈ C(θk) +∇C(θk)T(θ − θk)

We can only trust such an first-order Taylor approximation in some small region around
θk. Therefore, it is more reasonable to optimize the above first-order approximation subject
to a constraint enforcing θ to be not too far away from θk. For example, if we choose the
constraint as ‖θ − θk‖2 ≤ δ. Suppose θk+1 minimizes the above first-order approximation
subject to such a constraint. Based on the Lagrange theorem, we know

∇C(θk) + 2λ(θk+1 − θk) = 0

which leads to the update rule θk+1 = θk − 1
2λ
∇C(θk). This is exactly the policy gradient

method. Notice the constraint ‖θ − θk‖2 may not be necessarily appropriate for policy
optimization since it completely ignore the curvature information. This constraint uses the
Euclidean distance to measure how far away θ is from θk. However, the distance in policy
parameters is different from the distance in policy space. It is better to define a distance
metric on the policy space. One such constraint can be defined as (θ−θk)TF (θk)(θ−θk) ≤ δ
where F (θk) is the so-called fisher information matrix at θk. The fisher information matrix
is defined as

F (θ) = Eπθ
[
∇θ log πθ(uk|xk)(∇θ log πθ(uk|xk))T

]
The condition (θ − θk)TF (θk)(θ − θk) ≤ δ roughly enforces that the KL divergence of the
distributions under θ and θk is small. Such a constraint on the distributions in policy space
is more beneficial for policy optimization. Then by Lagrange theorem, we have

∇C(θk) + 2λF (θk)(θk+1 − θk) = 0

which can be rewritten as θk+1 = θk − 1
2λ
F (θk)

−1∇C(θk). This is exactly the update rule for
the natural policy gradient method. Natural policy gradient is faster than the policy gradient
method and also improves the stability at the same time. Under the fisher information
constraint, it is less likely that the properties of πθk+1

and πθk are fundamentally different.
There are still two remaining issues: 1) How to compute F (θk)

−1∇C(θk) efficiently when θ
is a high dimensional vector (this is the case for deep RL)? 2) How to choose the step size
for the natural policy gradient? These issues are addressed in the developments of TRPO.

Trust Region Policy Optimization TRPO is a popular method for practical deep RL
problems. It can be viewed as an improved version of the natural policy gradient method.

1. How to calculate F (θk)
−1∇C(θk)? Instead of inverting the Fisher information matrix,

TRPO uses a conjugate gradient (CG) method to directly calculate F (θk)
−1∇C(θk).

Such method is very efficient and is less costly compared with the matrix inversion
operation.

13-8

ECE 598 Lecture 13 — 10/22/2020-10/29/2020 Fall 2020

2. How to choose the stepsize? Another key feature of TRPO is that it uses the line
search to determine the stepsize. Suppose we want to choose αk and make the update
θk+1 = θk − αkF (θk)

−1∇C(θk). We can specify some α < 1 and search j such that
C(θk−αjF (θk)

−1∇C(θk)) < C(θk). Then we can just set αk = αj. However, to do such
a line search, we need to evaluate C(θk−αjF (θk)

−1∇C(θk)) for multiple j. We want to
skip such costly policy evaluation tasks. What can we do? The core idea of TRPO is
that it introduces a surrogate cost which approximates the true cost well in some “trust
region” and can be easily evaluated to facilitate the line search step. Specifically, TRPO
introduces the following cost under the trust region constraint EπθkDKL(πθ||πθk) ≤ δ.

Lθk(θ) = Eπθk

[
πθ(x|u)

πθk(x|u)
Aπθk (x, u)

]
Such a cost can be efficiently evaluated using data generated from πθk and hence one
can perform line search using such a surrogate cost efficiently. Importantly, the gradient
of the above surrogate cost at θk is the same as ∇C(θk). Hence, with such a surrogate
cost function, everything is the same as before except that we use Lθk in the line search
step.

More explanations on the surrogate cost in TRPO. Now we provide more explana-
tions for this cost. We need to use the following the relative policy performance identity:

C(θ)− C(θk) = Eπθ
∞∑
t=0

γtAπθk (xt, ut)

Notice minθ C(θ) = minθ(C(θ) − C(θk)) = minθ Eπθ
∑∞

t=0 γ
tAπθk (xt, ut). Samples from πθ is

still needed. After some calculations, one can show

C(θ)− C(θk) =
1

1− γ
Ex∼d,u∼πθA

πθk (x, u)

=
1

1− γ
Ex∼d,u∼πθk

[
πθ(x|u)

πθk(x|u)
Aπθk (x, u)

]
What if we just change d to the future state distribution over πθk? This is going to give us
the surrogate cost function we want. It turns out that we can make such an approximation
as long as we have the trust region constraint. This leads to the implementation of TRPO
where the line search is performed on Lθk to enforce both the policy improvement and the
constraint feasibility.

13-9

