
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 1
Overview: “Control for Learning” and “Learning for Control”

Lecturer: Bin Hu, Date:08/25/2020

In this lecture, we give an overview of this course. This course covers two main ideas:
“control for learning” and “learning for control.” In the first half of the course, we will talk
about how to apply control theory to unify and automate the analysis and design of machine
learning algorithms. In the second half of the course, we will talk about how to combine
reinforcement/imitation learning methods with model-based feedback design to solve various
control tasks provably.

1.1 Control for Learning

Analysis and design for machine learning algorithms are typically done in a case-by-case
manner. To analyzed a different algorithm, or change the underlying assumptions, we would
likely require a different analysis technique. We present two examples to illustrate this point.

• Example 1: SAG vs. SAGA. Many supervised learning tasks including classification
and prediction can be naturally formulated as the empirical risk minimization (ERM)
problem min 1

n

∑n
i=1 fi(x). Here, n denotes the size of the training set and can be quite

large. A full gradient computation can be too expansive. Stochastic average gradient
(SAG) [5, 6] and SAGA [2] are two popular stochastic iterative methods that can be
used to efficiently solve ERM on generalized linear models. At every step k, both
SAGA and SAG will draw a random index ik from the set {1, 2, . . . , n} and only use
the ik-th data point in the training set.

SAG: xk+1 = xk − α

(
∇fik(xk)− ykik

n
+

1

n

n∑
i=1

yki

)
where yk+1

i :=

{
∇fi(xk) if i = ik
yki otherwise

SAGA:xk+1 = xk − α

(
∇fik(xk)− ykik +

1

n

n∑
i=1

yki

)
where yk+1

i :=

{
∇fi(xk) if i = ik
yki otherwise

Although the update rules for SAG and SAGA are quite similar, the convergence
proofs for these two methods are quite different. The analysis for SAG is much more
complicated. A small change in the algorithm causes big trouble for analysis.

• Example 2: Markov assumption vs. IID assumption for temporal difference (TD)
learning. TD learning is usually used to solve the policy evaluation task in reinforce-
ment learning. The goal of TD learning is to determine the value function of a given
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policy. The standard TD method (or TD(0)) uses the following update rule:

θk+1 = θk − αψ(sk)
(
(ψ(sk)− γψ(sk+1))T θk − r(sk)

)
,

where {sk} is the underlying Markov chain, ψ is the feature vector, r is the reward,
γ is the discounting factor, and θk is the weight vector to be estimated. When {sk}
is IID, the finite-time analysis of TD(0) is straightforward [1, 4]. However, a more
reasonable assumption on {sk} for the MDP setup is that {sk} forms a Markov chain.
The analysis of TD learning under this assumption is much more involved and the first
finite sample bound was actually obtained in 2019 [8].

One can find many similar examples cases in machine learning. In contrast, control theory
is developed to provide general tools for analysis and design of feedback dynamical systems.
The field of control theory can be divided into many branches including classical control
theory, linear control theory, robust control theory, switching system theory, Markovian jump
linear system (MJLS) theory, parameter-varying system theory, nonlinear control theory.
Each of these branches covers the analysis and design of a large family of systems with
some common features. See Table 1.1 for a few sample results. The stability conditions in
Table 1.1 are all in the form of semidefinite programs and can be efficiently verified using
existing convex solvers. To analyze the stability of a given system, one only needs to find
a positive definite matrix P (or a sequence of positive definite matrices {Pj}) to satisfy the
matrix inequality conditions summarized in Table 1.1. When the state/input matrices or
the problem assumptions (e.g. the assumption on φ) are changed, one can still use the same
conditions. The point is that the tools in control theory are typically developed to handle a
large family of dynamical systems in some unified manner.

LTI systems MJLS Lur’e systems

Model ξk+1 = Aξk +Buk ξk+1 = Aikξ
k +Biku

k ξk+1 = Aξk +Bφ(Cξk)

Stability ATPA− P < 0
∑n

i=1 pijA
T
i PiAi − Pj < 0

[
ATPA− P ATPB
BTPA BTPB

]
+M < 0

Table 1.1. Several stability conditions developed in the controls literature.

The key idea forming the basis for the first half of the course is that we can view various
machine learning algorithms as feedback control systems and tailor control theory to analyze
and design learning algorithms. To illustrate this, we revisit Examples 1 & 2.

• A control perspective on Example 1: Both SAG and SAGA can be viewed as special
cases of Markov jump Lur’e systems governed by the model ξk+1 = Aikξ

k +Bikφ(Cξk)
where the jump parameter ik is a random variable sampled from a finite set, and
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(Aik , Bik) = (Ai, Bi) for ik = i. The random process {ik} is allowed to be either
an IID process or a Markov chain. Let ei be a n-dimensional vector whose i-th en-
try is 1 and all other entries are 0. Then the Markov jump Lur’e system model can
cover SAG, SAGA, and many other stochastic optimization methods as special cases
if we can choose (Aik , Bik , C) according to Table 1.2 and define the nonlinearity φ as

φ(x) =
[
∇f1(x)T ∇f2(x)T . . . ∇fn(x)T

]T
. The behaviors of all these stochastic op-

timization methods can be studied by applying the Markov jump Lur’e system theory.

Method Aik Bik C

SAGA [2]

[
In − eikeTik 0̃
−α
n
(e− neik)T 1

] [
eike

T
ik

−αeTik

] [
0̃T 1

]
SAG [5, 6]

[
In − eikeTik 0̃
−α
n
(e− eik)T 1

] [
eike

T
ik

−α
n
eTik

] [
0̃T 1

]
Finito [3]

[
In − eikeTik 0̃
−α(eike

T ) In − eik(eTik −
1
n
eT )

] [
eike

T
ik

0̃0̃T

] [
−αeT 1

n
eT
]

SDCA [7] In − αmneikeTik −αmneikeTik
1
mn
eT

Table 1.2. Jump Lur’e system models for SAG, SAGA, and other stochastic finite-sum methods.

• A control perspective on Example 2: We can set ik =
[
(sk+1)T (sk)T

]T
, and then the

TD learning method becomes a Markov jump linear system ξk+1 = Aikξ
k +Biku

k with
ξk = θk, uk = 1, Aik = I + αψ(sk)(γψ(sk+1)− ψ(sk))T, and Bik = αψ(sk)r(sk). Hence
we can directly apply the existing MJLS theory to obtain exact closed-form expressions
for the mean and covariance matrix of the TD estimation error under both the IID
and Markov assumptions.

The key message is that many algorithms in supervised, reinforcement, and unsupervised
learning can be viewed as feedback control systems. The first half of the course focuses on
tailoring control theory for analysis and design of machine learning algorithms.

1.2 Learning for Control

Suppose we want to control a general nonlinear system xk+1 = f(xk, uk, wk) where xk is the
state, uk is the control action, and wk is the process noise. The objective is to design a
mapping from the state measurement to the actuation input, i.e. uk = K(xk). Here K is
called “controller” or “policy.” Such a control design problem can be viewed as a constrained
optimization problem minK∈K J (K), where the decision variable K is determined by the
controller parameterization, the cost function J (K) is a pre-specified control performance
measure, and the feasible set K carries the information of the constraints on the controller.
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• Optimization variable K: In the simplest case, K is parameterized as a static matrix,
i.e. xk = Kuk. In the machine learning community, it is more popular to parameterize
K as a neural network.

• Objective function J (K): J (K) is specified to measure the performance of a given
controller K. Popular choices in the controls literature include H2 or H∞-norm (or
some related upper bounds) of the closed-loop systems. For standard reinforcement
learning models that are based on Markov decision processes (MDPs), the cost J (K)
can be handcrafted in a case-by-case manner and always has an additive structure over
time. For imitation learning models, the goal is to fit the control policy K based a
given set of measurement/action pairs demonstrated by experts, and the cost J (K) is
set up to measure the discrepancy between the true control action and the estimated
outputs of the controller.

• Feasible set K: Constraints on the decision variable K are typically posed to account
for either the stability, robustness, safety, or structural concerns on the system. A com-
mon, though sometimes implicit, example in continuous control tasks is the stability
constraint, i.e. K is required to stabilize the closed-loop dynamics. In the control field,
there are also other constraints related to robustness or safety concerns in control de-
sign. Examples include the famous H∞-constraint and various IQC-based constraints
from the robust control literature. In the reinforcement learning field, the constraints
are often imposed on either the expected long-term cost or some risk-related constraint.

Then we can apply gradient descent method or its variants to search for the optimal K. If
the model is unknown, machine learning methods can be applied to estimate the gradient
∇J from data. Many reinforcement learning methods such as policy gradient, natural policy
gradient, trust region policy optimization (TRPO), proximal policy optimization (PPO), and
evolutionary strategies (ES) are based on such an idea. The second half of the course focuses
on how to combine machine learning methods with model-based control techniques to handle
problems with stability/robustness/safety constraints. A few sample topics are listed below.

• Guarantees of reinforcement/imitation learning methods on linear control problems

K ′ = K − αS (∇J (K))

• Robustness constraints: robust control theory

• Safety constraints: model predictive control, constrained policy optimization

• Repetitive tasks: iterative learning control

• Combination of model-free and model-based methods
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