
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 2
Unifying the Analysis in Control and Optimization via Semidefinite Programs

Lecturer: Bin Hu, Date:08/27/2020

In this lecture, we review some stability analysis tools in the controls literature, and then
tailor them to analyze the convergence rates of some simple optimization methods. Hopefully
you will be convinced that there are similarities between the analysis problems in control
and optimization, and hence it is not too surprising that some analysis tools developed in
the controls field can be applied to study large-scale optimization.

2.1 Stability Analysis in Control

2.1.1 Autonomous Systems and Internal Stability

Possibly the simplest system in the controls literature is the following so-called (autonomous)
linear time-invariant system

ξk+1 = Aξk (2.1)

Here we consider discrete-time systems, and ξk is the state at time step k. Given the initial
condition ξ0, then the sequence {ξk} is completely determined by (2.1). One fundamental
question control people usually ask is whether (2.1) is stable. The system (2.1) is internally
stable if ξk converges to 0 given any arbitrary initial condition ξ0. Notice (2.1) just states
that we have ξk = Akξ0. There are four possible cases.

1. When A is Schur stable (or equivalently the spectral radius of A is smaller than 1), the

term Ak converges to a zero matrix. For example, if A =

[
0.9 0
0 0.9

]
, then Ak = 0.9kI.

2. When the spectral radius of A is equal to 1 and all the Jordan blocks corresponding
to eigenvalues with magnitude equal to 1 are 1 × 1, Ak remains bounded for any k.
This is the so-called marginal stability case where Akξ0 remains bounded but may not

converge to 0. For example, if A =

[
1 0
0 0.9

]
, then Ak =

[
1 0
0 0.9k

]
.

3. When the spectral radius of A is equal to 1 and at least one of the Jordan blocks
corresponding to eigenvalues with magnitude equal to 1 is not 1 × 1, Ak becomes

unbounded. For example, if A =

[
1 1
0 1

]
, then Ak =

[
1 k
0 1

]
.
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4. When the spectral radius of A is larger than 1, Ak also becomes unbounded. For

example, if A =

[
1.1 0
0 1.1

]
, then Ak = 1.1kI.

Therefore, it is straightforward to verify that (2.1) is stable if and only if the spectral
radius of A is strictly less than 1. The spectral radius condition only works for such lin-
ear time-invariant (LTI)1 system. It is hard to extend such conditions for time-varying or
nonlinear systems. Alternatively, one can also formulate necessary and sufficient stability
conditions for (2.1) using semidefinite programs.

Theorem 2.1. The system (2.1) is internally stable if and only if there exists a positive
definite matrix P such that

ATPA− P < 0 (2.2)

Here the inequality holds in the definite sense (so what we really mean here is that the matrix
(ATPA− P ) needs to be a negative definite matrix).

Proof: We will only show sufficiency since this direction can be generalized for time-varying
or nonlinear systems. If (2.2) holds, then there exists a sufficiently small positive number
ε > 0 such that ATPA− P ≤ −εP which can be rewritten as

ATPA− (1− ε)P ≤ 0.

Therefore we can left and right multiply both sides of the above inequality with ξTk and ξk
and obtain

(Aξk)
TP (Aξk)− (1− ε)ξTk Pξk ≤ 0

We have ξk+1 = Aξk and the above inequality is equivalent to ξTk+1Pξk+1 ≤ (1 − ε)ξTk Pξk.
By induction, we have

ξTk Pξk ≤ (1− ε)kξT0 Pξ0

Since P is positive definite, we have ξTk Pξk ≥ λmin(P )‖ξk‖2 where λmin(P ) is the smallest
eigenvalue of P and is a positive number. Finally we have

‖ξk‖2 ≤ (1− ε)kc (2.3)

where c =
ξT0Pξ0
λmin(P )

. We know 0 ≤ 1− ε < 1 and hence ‖ξ‖ converges to 0 as k goes to∞. We

have established the internal stability of (2.1).
The proof for necessity relies on the LTI assumption and is omitted here.

1This just means A is a constant matrix and does not change over time.
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How to use the condition (2.2)? The testing condition (2.2) leads to a semidefinite
program (or equivalently linear matrix inequality) problem. Given A, the left side of (2.2) is
linear in P . One just needs to search such positive definite P satisfying the matrix inequality
condition in (2.2). Numerically this can be done using semidefinite programming solvers.
In the controls field, many analysis and design conditions are formulated as linear matrix
inequality (LMI) conditions, and (2.2) is one of the simplest. We will see more such LMI
conditions later.

Lyapunov functions. The proof of Theorem 2.1 relies on constructing the Lyapunov
function V (ξ) = ξTPξ. A physical interpretation for this function is that it measures how
much energy is stored in the system. This function is nonnegative for all ξ and is zero at the
ξ = 0 (which is the fixed point of (2.1)). In addition, it is radially unbounded. In the above
proof, we have shown V (ξk+1) ≤ (1 − ε)V (ξk). So we have shown that the internal energy
of the system is decreased at every step and eventually the minimum energy is attained at
the fixed point. Lyapunov arguments can be applied in many cases and provide a powerful
unified framework for stability analysis. We will learn more about this approach later.

Advantages of (2.2). It is emphasized that people do not really use (2.2) when testing
the stability of (2.1). A more efficient approach is to look at the spectral radius of A
directly. However, (2.2) can be extended to time-varying/nonlinear systems which one cannot
apply the spectral radius arguments to analyze. For example, consider the so-called linear
parameter-varying (LPV) system described by the following state space model:

ξk+1 = A(ζk)ξk (2.4)

where the matrix A becomes a function of some scheduling parameter ζk. The parameter
ζ can be measured at every step but we do not know it in advance. We do know how A
depends on the value of ζk. Now we cannot come to a conclusion of the internal stability of
(2.4) by just looking at the spectral radius of A for all ζ. However, the Lyapunov argument
still works. We can show (2.4) is internally stable if there exists a positive definite matrix P
such that

A(ζ)TPA(ζ)− (1− ε)P ≤ 0, ∀ζ (2.5)

The proof is almost identical to the proof of Theorem 2.1. We left and right multiply both
sides of the above inequality with ξTk and ξk and obtain V (ξk+1) ≤ (1− ε)V (ξk) which imme-
diately leads to the desired conclusion. Here we do not have necessity. If there is no solution
for (2.5), it is still possible that (2.4) is internally stable. The numerical implementation of
(2.5) is tricky since it has to be satisfied for all ζ. A heuristic is to grid ζ and then the infinite
dimensional LMI condition (2.5) is approximated by a finite dimensional condition on the
grid of ζ. This approach does introduce some numerical errors. It is also worth mentioning
that sometimes we allow P to depend on the parameter ζ and this leads to the so-called
parameter-dependent Lyapunov functions which can reduce the conservatism in the stability
analysis. Now we give similar stability results for two more types of systems.
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• LTV system: Now we consider an LTV system ξk+1 = Akξk where we do know how
A explicitly depends on k. This system is internally stable if there exists a positive
definite matrix P such that

AT
kPAk − (1− ε)P ≤ 0, ∀k (2.6)

Again, the proof is based on Lyapunov arguments. Define V (ξ) = ξTPξ. We left
and right multiply both sides of the above inequality with ξTk and ξk and obtain
V (ξk+1) ≤ (1 − ε)V (ξk) which immediately leads to the desired conclusion. Again
the LMI condition here is infinite dimensional. One may need to solve this condition
analytically. Similar to the LPV case, we can allow P to depend on k and formulate a
less conservative LMI condition. If there exist a sequence of positive definite matrices
Pk such that Pk ≥ cI,∀k for some positive c and

AT
kPk+1Ak − (1− ε)Pk ≤ 0,∀k

then the LTV system is stable. The proof is based on defining a time-varying Lyapunov
function as V (ξk) = ξTk Pkξk. We can left and right multiply both sides of the above
LMI with ξTk and ξk and obtain V (ξk+1) = ξTk+1Pk+1ξk+1 ≤ (1−ε)ξTk Pkξk = (1−ε)V (ξk)
which immediately leads to the desired conclusion.

• Jump systems: Consider the system ξk+1 = Aikξk where {ik} itself is a stochastic
process. This system is mean square stable if E‖ξk‖2 converges to 0 given any initial
conditions. Notice the state matrix depends on the jump parameter ik. For simplicity,
we assume {ik} is an I.I.D process sampled from a finite set {1, 2, . . . , n}. Suppose
Pr(ik = i) = pi. Again, we can use Lyapunov arguments to obtain stability conditions
in the form of LMIs. This jump system is mean square stable if there exists a positive
definite matrix P such that

n∑
i=1

piA
T
i PAi − P < 0 (2.7)

The proof is similar to the LTI system case but we need to use a little bit probability
theory. The above LMI ensures

∑n
i=1 piA

T
i PAi − (1 − ε)P ≤ 0 for some sufficiently

small positive ε. Again we define V (ξk) = ξTk Pξk. A key relation is E[V (ξk+1)| ξk] =∑n
i=1 piξ

T
kA

T
i PAiξk.

2 Therefore, we can left and right multiply both sides of the LMI
with ξTk and ξk and obtain E[V (ξk+1)|ξk] =

∑n
i=1 piξ

T
kA

T
i PAiξk ≤ (1 − ε)ξTk Pkξk =

(1−ε)V (ξk). Then we can take the full expectation and iterate the resultant inequality
to establish the mean square stability. Notice when n = 1, the condition (2.7) just
recovers the standard LMI condition for the LTI system. One can also allow ik to
be sampled from a Markov chain, and that leads to the so-called Markov jump linear
system (MJLS). The stability conditions for MJLS are in the form of coupled LMIs,
which are more complicated than (2.7). We skip the details here.

2To be more precise, the conditional expectation should be taken on Fk which is the σ-algebra at k. We
avoid such mathematical machinery here. Just think that if ξk is known, then the only source for randomness
is ik and we just average Vk based on the distribution of ik.
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There are many other types of linear dynamical systems including periodic systems that can
be handled by similar Lyapunov arguments. We will not cover all of them. The key message
is that time-invariance is not required by Lyapunov theory.

Convergence rate. Inequality (2.3) in the above proof actually gives an exponential con-
vergence rate

√
1− ε which quantifies how fast ‖ξk‖ approaches 0. An LTI system is either

exponentially stable or not stable. Actually one can modify the LMI condition (2.2) to test
whether (2.1) converges at a given testing rate or not. If there exists a positive definite
matrix P such that

ATPA− ρ2P ≤ 0 (2.8)

then the system (2.1) converges at the exponential rate ρ, i.e. ‖ξk‖ ≤ cρk where c is a
constant. The can be proved using a similar Lyapunov argument. Such an LMI approach
works for time-varying/stochastic systems. In controls literature, the above convergence
behavior is called exponential convergence. In optimization literature, the above convergence
behavior is called linear convergence. The reason is that if one takes the log of the convergence
bound cρk, one gets k log ρ+log c, which is a linear function of k. Clearly the smaller ρ is, the
faster ξk converges to 0. There are also other types of convergence behaviors. For example,
if ‖ξk‖ ≤ c

k
, then the rate bound is in the form of O( 1

k
). This rate is much slower than O(ρk).

In this case, the convergence is “sublinear.” If an LTI system is stable, then its convergence
speed is linear. It is worth mentioning that the convergence rate of a stable LTI system can
also be specified by the spectral radius of its state matrix A. There are two possible cases.

1. When A is Schur stable and all the Jordan blocks corresponding to eigenvalues with
magnitude equal to the spectral radius of A are 1 × 1, Ak converges at a rate which

is exactly equal to the spectral radius of A. For example, if A =

[
0.9 0
0 0.9

]
, then

Ak = 0.9kI and the convergence rate is exactly 0.9.

2. When A is Schur stable and at least one of the Jordan blocks corresponding to eigen-
values with magnitude equal to the spectral radius of A is not 1× 1,, Ak converges at
a rate which is the sum of the spectral radius of A and any arbitrarily small ε. For

example, if A =

[
0.9 0.9
0 0.9

]
, then Ak = 0.9k

[
1 k
0 1

]
. So the exact convergence bound is

in the form of O(0.9kk). This bound can be further upper bounded by O((0.9 + ε)k)
for any ε > 0 and hence the linear rate we have is 0.9 + ε.

Please read Section 2 of [1]. You will see that in general this arbitrarily small constant ε just
naturally appears in the rate bound for LTI systems. The appearance of ε is due to the fact
that in general the Jordan blocks corresponding to eigenvalues with magnitude equal to the
spectral radius of A may not be 1× 1.
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Continuous-time results. There are similar results for continuous-time systems. For
example, consider a continuous-time LTI system ξ̇ = Aξ. This system is internally stable if
there exists a positive definite P such that ATP +PA < 0. The proof is similar. There exists
a sufficiently small ε such that ATP + PA ≤ −2εP . We can define a quadratic Lyapunov
function V (ξ) = ξTPξ and then V̇ = ξ̇TPξ + ξTP ξ̇ = ξT(ATP + PA)ξ ≤ −2εV . Therefore,
V ≤ Ce−2εt and ξ decays at an exponential rate. Similar results can be derived for LPV or
LTV systems.

2.1.2 Taking Inputs into Accounts: Input-Output Gain

In the controls field, we study how inputs can be used to change the behavior of the system.
Built upon the autonomous system model (2.1), now we introduce more general state-space
models for dynamical systems. Let a dynamic system G be governed by a linear state-space
model, which is described by the following recursive iteration:

ξk+1 = Aξk +Buk

yk = Cξk +Duk
(2.9)

where ξk ∈ Rnξ , uk ∈ Rnu , yk ∈ Rny , A ∈ Rnξ×nξ , B ∈ Rnξ×nu , C ∈ Rny×nξ , and D ∈ Rny×nu .
At each step k, the variables ξk, uk, and yk are referred to as the state, input, and output
of the system G. When the initial condition ξ0 is given, the state {ξk} and the output {yk}
will be completely determined by the input sequence {uk}.

Block diagram. In the controls field, block diagrams are widely used. The input-output
relationship of the dynamical system G can be described by the following block diagram.

G
u

-
y

-

Figure 2.1. The Block-Diagram for a Dynamic System G

The above block diagram just states (u, y) satisfies y = G(u) when one views the dynam-
ical system G (with some fixed initial condition) as an input-output map.

Clearly one can set u = 0 and study the internal stability of the resultant autonomous
system. We have already talked about this type of analysis. Another important question is
how the input uk will affect the output yk. A useful tool for answering such questions is the
following LMI condition.

Theorem 2.2. If there exists a positive semidefinite matrix P such that[
ATPA− P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

]
≤ 0 (2.10)
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then for any ξ0 and arbitrary input sequence {uk}, the system (2.9) satisfies the following
bound with any N

N∑
k=0

‖yk‖2 ≤ γ2
N∑
k=0

‖uk‖2 + ξT0 Pξ0 (2.11)

Proof: Based on the condition (2.10), we have[
ξk
uk

]T([
ATPA− P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

])[
ξk
uk

]
≤ 0 (2.12)

Notice we have ξTk+1Pξk+1 = (Aξk + Buk)
TP (Aξk + Buk) =

[
ξk
uk

]T [
ATPA ATPB
BTPA BTPB

] [
ξk
uk

]
.

Therefore, we have[
ξk
uk

]T [
ATPA− P ATPB
BTPA BTPB

] [
ξk
uk

]
= ξTk+1Pξk+1 − ξTk Pξk

Similarly, we have

‖yk‖2 − γ2‖uk‖2 = (Cξk +Duk)
T(Cξk +Duk)− γ2‖uk‖2 =

[
ξk
uk

]T [
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

] [
ξk
uk

]
Consequently, (2.12) just leads to

ξTk+1Pξk+1 − ξTk Pξk + ‖yk‖2 − γ2‖uk‖2 ≤ 0 (2.13)

Since P is positive semidefinite, we know ξTN+1PξN+1 ≥ 0. We can directly sum the above
inequality form k = 0 to N to finish the proof of Theorem 2.2.

Interpretations of γ. The smaller γ is, the more stable G is subject to the input u.
Therefore, γ is a measure for input-output stability. Many control problems including track-
ing and disturbance rejection can be formulated as optimization problems whose objectives
are minimizing such input-output gain γ. The famous H∞ control is based on this idea.

How to use the condition (2.10)? When (A,B,C,D) are given, the condition (2.10) is
linear in P and γ2. Therefore, minimizing γ2 subject to the constraints (2.10) and P ≥ 0
can also be done via semidefinite programs.
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Extensions. Similar analysis can be performed for time-varying/stochastic systems.

• LPV systems: Now we consider the LPV system

ξk+1 = A(ζk)ξk +B(ζk)uk

yk = C(ζk)ξk +D(ζk)uk
(2.14)

where the matrices (A,B,C,D) depend on the scheduling parameter ζk. If there exists
a positive semidefinite matrix P such that[
A(ζ)TPA(ζ)− P A(ζ)TPB(ζ)
B(ζ)TPA(ζ) B(ζ)TPB(ζ)

]
+

[
C(ζ) D(ζ)

0 I

]T [
I 0
0 −γ2I

] [
C(ζ) D(ζ)

0 I

]
≤ 0, ∀ζ

then for any ξ0 and arbitrary input sequence {uk}, the system (2.14) satisfies the
input-output bound

∑N
k=0‖yk‖2 ≤ γ2

∑N
k=0‖uk‖2 + ξT0 Pξ0 for any N . The proof is

almost identical. Define V (ξ) = ξTPξ. We left and right multiply both sides of

the LMI condition with
[
ξTk uTk

]
and

[
ξk
uk

]
and obtain V (ξk+1) − V (ξk) + ‖yk‖2 −

γ2‖uk‖2 ≤ 0 which immediately leads to the desired conclusion. Again, the numerical
implementation of the LMI relies on griding heuristics. We may allow P to depend on
the parameter ζ to reduce the conservatism in the analysis. However, the use of such
parameter-dependent Lyapunov functions further increases the computational cost.

• LTV system: We can use similar Lyapunov arguments to obtain the following input-
output analysis condition for LTV systems[

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
+

[
Ck Dk

0 I

]T [
I 0
0 −γ2I

] [
Ck Dk

0 I

]
≤ 0, ∀k

Detailed derivations are omitted.

• Jump systems: Consider the following jump system

ξk+1 = Aikξk +Bikuk

yk = Cikξk +Dikuk
(2.15)

where {ik} is the jump parameter sampled from a finite set {1, 2, . . . , n} in an I.I.D.
manner. Suppose Pr(ik = i) = pi. If there exists a positive semidefinite matrix P such
that

n∑
i=1

(
pi

[
AT
i PAi − P AT

i PBi

BT
i PAi BT

i PBi

]
+ pi

[
Ci Di

0 I

]T [
I 0
0 −γ2I

] [
Ci Di

0 I

])
≤ 0

then the system (2.15) satisfies
∑N

k=0 E‖yk‖2 ≤ γ2
∑N

k=0 E‖uk‖2 + EξT0 Pξ0 for any N .
The proof is again based on standard Lyapunov arguments. (Verify this yourself!) We
can see the same trick has been applied again and again to obtain all these different
results.
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An interesting variant of Theorem 2.2. Suppose the input uk satisfies a bound ‖uk‖ ≤
U where U is a constant. Then we can modify Theorem 2.3 to show ξk converges to a ball
around 0. The result is formally stated as follows.

Theorem 2.3. If there exists a positive semidefinite matrix P such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
+

[
0 0
0 −γ2I

]
≤ 0 (2.16)

then for any ξ0 and arbitrary input sequence {uk} satisfying ‖uk‖ ≤ U , the following in-
equality holds

ξTk Pξk ≤ ρ2kξT0 Pξ0 +
γ2U2

1− ρ2
(2.17)

Proof: Based on the LMI condition, we have[
ξk
uk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
+

[
0 0
0 −γ2I

])[
ξk
uk

]
≤ 0 (2.18)

Notice we have ξTk+1Pξk+1 = (Aξk + Buk)
TP (Aξk + Buk) =

[
ξk
uk

]T [
ATPA ATPB
BTPA BTPB

] [
ξk
uk

]
.

Therefore, we have[
ξk
uk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξk
uk

]
= ξTk+1Pξk+1 − ρ2ξTk Pξk

Eventually we have

ξTk+1Pξk+1 ≤ ρ2ξTk Pξk + γ2‖uk‖2 ≤ ρ2ξTk Pξk + γ2U2 (2.19)

We can iterate the above inequality to obtain the desired conclusion.

As a matter of fact, if ATPA − ρ2P < 0, then there exists a sufficiently large γ that (2.16)
holds. This can be proved using Schur complement lemma.

Continuous-time results. There are similar results for continuous-time systems. For
example, consider a continuous-time LTI system

ξ̇ = Aξ +Bu

y = Cξ +Du

If there exists a positive semidefinite matrix P such that[
ATP + PA PB

BTP 0

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

]
≤ 0
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then we have ∫ T

t=0

‖y(t)‖2dt ≤ γ2
∫ T

t=0

‖u(t)‖2dt+ ξT0 Pξ0

A key fact used in the proof is V̇ = ξ̇TPξ + ξTP ξ̇ =

[
ξ
u

]T [
ATP + PA PB

BTP 0

] [
ξ
u

]
.

2.2 Convergence Analysis in Optimization

In this section, we will apply the linear system tools reviewed in the last section to analyze
some simple iterative algorithms in optimization. Hopefully this convinces you that there is
some similarity between analyzing a control system and analyzing an optimization algorithm.

• Example 1: Optimization of a Quadratic Function. Suppose we want to mini-
mize a quadratic function:

min
x∈Rp

g(x) =
1

2
xTQx+ qTx+ r (2.20)

where Q > 0. Clearly we have ∇f(x) = Qx + q. Suppose x∗ is the optimal point, i.e.
Qx∗+q = 0. Since the function is strongly convex (Q > 0), there exists a unique x∗ for
this problem. To find such an optimal point, we can start from an arbitrary initial point
x0 and then run an iterative gradient-based algorithm. The simplest algorithm we can
run is the gradient descent method xk+1 = xk − α∇f(xk). Since ∇f(x) = Qx+ q, the
gradient descent method is equivalent to the following linear system:

xk+1 = xk − α(Qxk + q) = (I − αQ)xk − αq = (I − αQ)xk + αQx∗

which can be rewritten as xk+1 − x∗ = (I − αQ)(xk − x∗). Hence we can denote
ξk = xk − x∗. Analyzing how fast xk converges to x∗ is equivalent to analyzing how
fast ξk converges to 0. Hence if there exists a positive definite P such that

(I − αQ)TP (I − αQ)− ρ2P ≤ 0,

then the gradient descent method is guaranteed to converge at the rate ρ for the above
quadratic optimization problem. Now we assume f is L-smooth and m-strongly convex,
i.e. mI ≤ Q ≤ LI. Then we can just use P = I to recover the standard convergence
rate of the gradient descent method. We can also consider more complicated algorithms
such as the Heavy-ball method and the Nesterov’s accelerated method. The heavy-ball
method applies the following update:

xk+1 = xk − α∇f(xk) + β(xk − xk−1) = xk − α(Qxk + q) + β(xk − xk−1)
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which can be rewritten as[
xk+1 − x∗
xk − x∗

]
=

[
(1 + β)I − αQ −βI

I 0

] [
xk − x∗
xk−1 − x∗

]
Hence the Heavy-ball method becomes an LTI system with

ξk =

[
xk − x∗
xk−1 − x∗

]
, A =

[
(1 + β)I − αQ −βI

I 0

]
The Nesterov’s method applies the following update:

xk+1 = xk − α∇f((1 + β)xk − βxk−1) + β(xk − xk−1)
= xk − α (Q((1 + β)xk − βxk−1) + q) + β(xk − xk−1)

which can be rewritten as[
xk+1 − x∗
xk − x∗

]
=

[
(1 + β)(I − αQ) −β(I − αQ)

I 0

] [
xk − x∗
xk−1 − x∗

]
Hence the Heavy-ball method becomes an LTI system with

ξk =

[
xk − x∗
xk−1 − x∗

]
, A =

[
(1 + β)(I − αQ) −β(I − αQ)

I 0

]
You will be asked to discuss how to apply the LTI system theory to recover standard
convergence rates of the above three methods3 at the beginning of Lecture 3. Be
prepared!

• Example 2: Inaccurate gradients. Suppose the gradient information is corrupted
as ∇f(xk) + uk where we only know some upper bounds on the norm of uk. Can we
apply Theorem 2.3 to show that the gradient descent method still converges to a ball
around x∗? The answer is yes! The gradient descent method becomes

xk+1 − x∗ = (I − αQ)(xk − x∗)− αuk.

In this case, xk does not converge to x∗ exactly, but it is going to stay within a ball
around x∗. Theorem 2.3 can be directly applied!

There are many other examples. For example, SGD on ridge regression becomes an MJLS.
The policy evaluation in reinforcement learning can be viewed as an LTI system. A question
is how to extend the above analysis to general settings involving more general cost functions
and stochastic algorithms. We will talk about this in the next two lectures.

3Please take a look at Proposition 1 of [1] for existing rate bounds.
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