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Another important object that has been extensively studied in the controls field is the
feedback interconnection. For a dynamical system G and a mapping ∆, a feedback intercon-
nection of G and ∆ is shown in Figure 3.1 and denoted as Fu(G,∆).
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Figure 3.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

The feedback interconnection states that v and w must satisfy v = G(w) and w = ∆(v)
simultaneously. For example, when G is an LTI system and ∆ is a static nonlinearity, the
feedback interconnection Fu(G,∆) actually denotes the following recursive equations:

ξk+1 = Aξk +Bwk

vk = Cξk +Dwk

wk = ∆(vk)

(3.1)

The first two equations in the above iterations state the fact v = G(w), and the third
equation enforces w = ∆(v).

Well-posedness. Clearly a basic question one should ask is whether there exists a pair of
(v, w) satisfying v = G(w) and w = ∆(v) simultaneously such that the feedback intercon-
nection Fu(G,∆) is well defined in the first place. This is the so-called well-posedness issue.
Typically, one needs to prove well-posedness in a case-by-case manner.

Example: Lur’e systems. When D = 0, the system (3.1) is equivalent to a nonlinear
autonomous system ξk+1 = Aξk +B∆(Cξk), which is the so-called Lur’e system. Therefore,
the sequences {ξk}, {wk}, and {vk} will be completely determined given an initial condition
ξ0, and the feedback interconnection is well-posed. It is more difficult to analyze the internal
stability of the nonlinear system ξk+1 = Aξk +B∆(Cξk) than the linear autonomous system
ξk+1 = Aξk. The nonlinear map ∆ introduces some fundamental difficulty such that the
spectral radius argument cannot be applied any more. If ∆ is a linear function, then the
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nonlinear system ξk+1 = Aξk + B∆(Cξk) becomes linear and the internal stability analysis
becomes easy. However, general ∆ is hard to handle. For some types of nonlinearity, one
can still modify the previous Lyapunov arguments to obtain stability conditions in the form
of LMIs.

Generality of the feedback interconnection model. The above type of feedback in-
terconnections becomes a key object for robust control study due to the fact that it can
model various “perturbed” versions of linear systems. The perturbation ∆ can be model
uncertainty, delays, or nonlinearity. We will explain this in next section and then talk about
a general robustness analysis tool called dissipation inequality.

3.1 Uncertainty Modeling in Control

In the controls field, the feedback interconnection Fu(G,∆) is widely used to model uncer-
tain or nonlinear systems. The idea is to separate a dynamical system into two pieces: a
“nominal” part G and a perturbation ∆. The nominal part G is typically linear and easy to
analyze. The perturbation ∆ can be the uncertainty in the system dynamics or some trouble-
some element causing difficulty in the analysis. The feedback interconnection Fu(G,∆) can
be viewed as a “perturbed” version of the nominal system G. The study for such perturbed
systems forms the foundation of robust control. Now let’s look at a few examples of ∆.

• Parametric uncertainty: Consider a linear system ξk+1 = Aξk. We want to know
whether this system is stable or not. In practice, we will not know A exactly. Typically
we have A = Ā + Aδ where Ā is some measured version of A and Aδ captures the
uncertainty in the system dynamics. We do not know what Aδ is exactly equal to, but
we do know that Aδ is a constant matrix whose input-put gain is bounded above by
some small number. Therefore, the system dynamics becomes ξk+1 = (Ā+Aδ)ξk, and
can be rewritten as a special case of Fu(G,∆) where ∆ maps v to w as wk = (Aδ)vk,
and G is defined as

ξk+1 = Āξk + wk

vk = ξk

Although we do not know what Aδ is equal to, it is still possible that we can use the
bound on Aδ to establish the stability of such a feedback interconnection.

• Time-varying parameters: In the above example, we can further allow Aδ to change
over time, i.e. wk = (A

(k)
δ )vk. We can absorb the time-varying element into ∆ and

treat it as a perturbation.

• Time delay: Consider a control system ξk+1 = Aξk + Buk where the state feedback
controller is affected by a delay, i.e. uk = Kξk−τk . Ideally, the control input should
be determined based on the current state information. However, there may be a time
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delay in the system and eventually uk is calculated based on a past state measurement
xk−τk . Here τk is the delay at step k. We can choose G as an LTI system governed by
ξk+1 = Aξk+BKwk and vk = ξk. Then the control system can be modeled as Fu(G,∆)
where ∆ is a delay operator mapping v to w as wk = vk−τk . Notice G and ∆ should
be thought as operators that map real sequences to real sequences.

• Dynamical uncertainty: Sometimes even the order of the model may not be correct. For
example, one may use a rigid body model for control purposes when there are flexible
modes in the true dynamics. In this case, ∆ is a dynamical system satisfying some
norm bound. Specially, wk is not completely determined by vk. The computation of wk
may require the past information of the sequence {vk}. For example, ∆ can sometimes
be a LTI system itself:

ζk+1 = A∆ζk +B∆vk

wk = C∆ζk +D∆vk

In this case, we do not know the matrices (A∆, B∆, C∆, D∆). To make things worse, we
do not even know the dimension of ζk. We only know that the norm of ∆ is bounded,
i.e. we can establish a bound in the form of

∑∞
k=0‖wk‖2 ≤ γ2

∑∞
k=0‖vk‖2 for ζ0 = 0.

• Actuator saturation and other nonlinearity: Sometimes a few parts of a control system
can not be modeled by linear approximations and the nonlinearity has to be taken into
accounts for the stability analysis. It is possible to separate the nonlinearity from the
linear dynamics and absorb it into ∆. One such example is the actuator saturation.
Specifically, suppose vk is a scaler. The saturation function maps vk to wk as wk = vk
for |vk| ≤ vmax and wk = vmax for |vk| ≥ vmax. Other examples include periodically
changing nonlinear functions such as cos and sin.

To summarize, the perturbation ∆ can model uncertain dynamics, time delay, and nonlin-
earity in the control system. All these perturbation operators have been extensively studied
in the controls literature. Many LMIs have been formulated to test the stability of feedback
systems involving such perturbations.

For example, if one knows ∆ is a bounded operator and ‖∆(vk)‖ ≤ δ‖vk‖ for any vk,
then one can use the following LMI condition to test the internal stability of Fu(G,∆).

Theorem 3.1. Suppose ∆ is a bounded operator and ‖∆(vk)‖ ≤ δ‖vk‖ for any vk. If there
exists a positive definite matrix P and a positive rate 0 < ρ < 1 such that[

ATPA− ρ2P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

]
≤ 0 (3.2)

then for any x0, the feedback interconnection (3.1) satisfies ‖xk‖ ≤ cρk‖x0‖ where c is some
constant.
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Proof: Based on the condition (3.2), we have[
ξk
wk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
+

[
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

])[
ξk
wk

]
≤ 0 (3.3)

Similarly as before, we have[
ξk
wk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξk
wk

]
= ξTk+1Pξk+1 − ρ2ξTk Pξk

We also have

−‖wk‖2 + δ2‖vk‖2 = −‖wk‖2 + δ2(Cξk +Dwk)
T(Cξk +Dwk)

=

[
ξk
wk

]T [
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

] [
ξk
wk

]
Consequently, (3.3) just leads to

ξTk+1Pξk+1 − ρ2ξTk Pξk + δ2‖vk‖2 − ‖wk‖2 ≤ 0

Since ‖wk‖ = ‖∆(vk)‖ ≤ δ‖vk‖, we know δ2‖vk‖2 − ‖wk‖2 ≥ 0, and the above inequality
leads to xTk+1Pxk+1 − ρ2xTkPxk ≤ 0. Since P is positive definite, we can immediately obtain
the desired conclusion.

Again, when (A,B,C,D) and ρ2 are given, the condition (3.2) is linear in P and can
be numerically solved via semidefinite programs. The key idea in the above analysis is to
replace the nonlinearity ∆ with a bound ‖wk‖2 = ‖∆(vk)‖2 ≤ δ2‖vk‖2 and then combine
this bound with the linear state-space model of G to formulate an LMI condition.

Extensions. One can extend the above analysis to handle much more general systems.
One can generalize the analysis for the cases where G is time-varying or even stochastic. We
will discuss this in next lecture.

3.2 Optimization Methods as Feedback Systems

In recent years it has been recognized that many first-order optimization methods for large-
scale problems are just special cases of feedback systems. In this section, we will look at a
few examples including the gradient descent method, the Heavy-ball method, and Nesterov’s
accelerated method.

To minimize a function f(x), the gradient method iterates as xk+1 = xk−α∇f(xk). The
Heavy-ball method iterates as

xk+1 = xk − α∇f(xk) + β(xk − xk−1) (3.4)
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The extra term β(xk − xk−1) is the so-called “momentum term.” One needs to choose
the stepsize α and the momentum β, and also initialize the method at x0 and x−1. Then
based on this iteration, one can compute x1, x2, . . ..

Nesterov’s accelerated method has a similar iterative form:

yk = xk + β(xk − xk−1)

xk+1 = yk − α∇f(yk)

We can simply rewrite Nesterov’s method as

xk+1 = xk − α∇f((1 + β)xk − βxk−1) + β(xk − xk−1) (3.5)

This looks very similar to the Heavy-ball method. The difference is that Nesterov’s acceler-
ated method uses a gradient evaluated at (1 + β)xk − βxk−1 while the Heavy-ball method
uses a gradient evaluated at xk. The Heavy-ball method and Nesterov’s method only use the
first-order derivative (gradient) and do not require evaluating the second-order derivative
(Hessian). Hence they belong to “first-order optimization methods.”

All the above methods can be modeled as feedback interconnection Fu(G,∆) where G is
an LTI system with D = 0 and ∆ is just the gradient ∇f . In this case, Fu(G,∆) becomes
the following feedback model

ξk+1 = Aξk +Bwk

vk = Cξk

wk = ∇f(vk)

(3.6)

where A, B, and C are matrices with compatible dimensions. In this general model, we can
choose (A,B,C) accordingly to recover various first-order methods.

1. For gradient method, we choose A = I, B = −αI, C = I, and ξk = xk. Then
vk = Cξk = xk, and wk = ∇f(vk) = ∇f(xk). The iteration ξk+1 = Aξk + Bwk just
becomes xk+1 = Axk +Bwk = xk − α∇f(xk), which is exactly the gradient method.

2. For the Heavy-ball method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
I 0

]
,

and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
I 0

] [ xk
xk−1

]
= xk, and wk = ∇f(vk) = ∇f(xk).

The iteration ξk+1 = Aξk +Bwk becomes[
xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(xk) =

[
(1 + β)xk − βxk−1 − α∇f(xk)

xk

]
which is exactly the iteration for the Heavy-ball method.
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3. For Nesterov’s accelerated method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
,

C =
[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
(1 + β)I −βI

] [ xk
xk−1

]
=

(1 + β)xk − βxk−1, and wk = ∇f(vk) = ∇f((1 + β)xk − βxk−1). The iteration ξk+1 =
Aξk +Bwk becomes[

xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(vk)

=

[
(1 + β)xk − βxk−1 − α∇f((1 + β)xk − βxk−1)

xk

]
which is exactly the iteration (3.5) for Nesterov’s accelerated method.

We can see that the only difference between Nesterov’s accelerated method and the
Heavy-ball method is the choice of C. The different choices of C lead to completely different
performance guarantees for these two methods when applied to smooth strongly-convex
objective functions.

3.3 Robustness Analysis via Dissipation Inequalities

The impacts of the perturbation ∆ on the performance of the closed-loop system Fu(G,∆)
can be assessed by various robustness analysis tools in the controls literature. One such
analysis routine is provided by the dissipation inequality approach.

Let us first look at ξk+1 = Aξk+Bwk. Dissipation inequality just describes how the input
wk changes the energy of the state ξk.

Definition 1. The system ξk+1 = Aξk + Bwk is dissipative with respect to the supply rate
S(ξ, w) if there exists V : Rnξ 7→ R+ such that

V (ξk+1)− V (ξk) ≤ S(ξk, wk) (3.7)

for all k. The function V is called a storage function, which quantifies the energy stored in
the state ξ. The supply rate S is a function that quantifies the energy supplied to the state
ξk by the input wk. In addition, (3.7) is called the dissipation inequality.

The dissipation inequality (3.7) states that the internal energy increase is equal to the
sum of the supplied energy and the energy dissipation. Since there will always be some
energy dissipating from the system, hence the internal energy increase (which is exactly
V (ξk+1) − V (ξk)) is always bounded above by the energy supplied to the system (which is
exactly S(ξk, wk)).

One important variant of the original dissipation inequality is the so-called exponential
dissipation inequality:

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, wk) (3.8)
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where 0 < ρ2 < 1. The dissipation inequality (3.8) just states that at least a (1−ρ2) fraction
of the internal energy will dissipate at every step, and hence the internal energy at step k+1
is bounded above by the sum of the remaining energy ρ2V (ξk) and the supply energy S.

3.3.1 How to use dissipation inequality?

Suppose we can construct the dissipation inequality (3.8). What are we going to do about
it? The answer is that the dissipation inequality (3.8) can be used to prove stability or
convergence rate bounds for Fu(G,∆). To make things concrete, let’s focus on (3.6) which
is a general model for optimization methods.

Notice by definition Vk ≥ 0 (the internal energy should be non-negative). Typically V
is chosen to be a distance metric between ξk and the equilibrium point ξ∗. For example,
for gradient method, V is chosen as V = ‖x− x∗‖2. When applied to analyze optimization
methods, the dissipation inequality is typically used to prove two types of bounds.

1. If one already knows S ≤ 0, then the dissipation inequality (3.8) states V (ξk+1) −
ρ2V (ξk) ≤ S(ξk, wk) ≤ 0. This gives a bound V (ξk+1) ≤ ρ2V (ξk). This proves a linear
convergence rate ρ when V is used as a distance metric. We will present such an
example by analyzing the gradient method.

2. If one already knows S ≤ ρ2(f(xk)− f(x∗))− (f(xk+1)− f(x∗)), then the dissipation
inequality (3.8) states V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) ≤ ρ2(f(xk)−f(x∗))− (f(xk+1)−
f(x∗)). This gives a bound V (ξk+1) + f(xk+1) − f(x∗) ≤ ρ2 (V (ξk) + f(xk)− f(x∗)).
This proves a linear convergence rate ρ when V (ξk)+f(xk)−f(x∗) is used as a distance
metric. There is going to be one lecture devoting to cover such an argument for the
convergence rate analysis of Nesterov’s accelerated method.

3.3.2 How to choose supply rate?

The supply rate S typically takes a form of a quadratic function:

S(ξ, w) =

[
ξ − ξ∗
w

]T
X

[
ξ − ξ∗
w

]
(3.9)

where X is some given matrix. The key issue is how to choose X.
Recall that the feedback dynamics Fu(G,∆) consists of two parts: v = G(w) and w =

∆(v). If we want to choose X to guarantee the supply rate S satisfying some inequality, e.g.
S ≤ 0, we need to use the property of ∆.
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For example, consider the gradient method. Here ∆ is just ∇f . If f is L-smooth and
m-strongly convex 1, we know the following inequality holds for any wk = ∇f(Cξk)[

Cξk − Cξ∗
wk

] [
−2mLI (m+ L)I

(m+ L)I −2I

] [
Cξk − Cξ∗

wk

]
≥ 0. (3.10)

We can simply choose X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
and then the supply

rate (3.9) satisfies S ≤ 0 due to the fact wk = ∇f(Cξk).
Many control papers focus on developing X for various types of ∆. We will come back

to this in next section.

3.3.3 How to construct the dissipation inequality?

Now suppose we have already constructed the supply rate (3.9) with desired properties. How
can we construct the dissipation inequality (3.8) for such a supply rate? We can use the
following approach.

Theorem 2. Suppose ξk+1 = Aξk + Bwk and ξ∗ = Aξ∗. Consider a quadratic supply rate
(3.9). If there exists a positive semidefinite matrix P ∈ Rnξ×nξ s.t.[

ATPA− ρ2P ATPB
BTPA BTPB

]
−X ≤ 0 (3.11)

then we have V (ξk+1)− ρ2V (ξk) ≤ S(ξk, wk) with V (ξ) = (ξ − ξ∗)TP (ξ − ξ∗).

Proof: Based on (3.11), we directly have[
ξk − ξ∗
wk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
−X

)[
ξk − ξ∗
wk

]
≤ 0

Notice we have V (ξk+1) =

[
ξk − ξ∗
wk

]T [
ATPA ATPB
BTPA BTPB

] [
ξk − ξ∗
wk

]
. This immediately leads

to the desired conclusion.

1A differentiable function f : Rp → R is L-smooth if for all x, y ∈ Rp, one has ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖.
In addition, f is m-strongly convex (for some m > 0) if for all x, y ∈ Rp, one has f(x) ≥ f(y) +∇f(y)T(x−
y) + m

2 ‖x − y‖2. A point x∗ ∈ Rn is a global min of f if f(x∗) ≤ f(x) for all x. When f is m-strongly
convex, x∗ is unique and satisfies ∇f(x∗) = 0. When f is L-smooth and m-strongly convex, we have
(∇f(x)−∇f(y))T(x− y) ≥ mL

m+L‖x− y‖2 + 1
m+L‖∇f(x)−∇f(y)‖2 for all x, y ∈ Rn. This is equivalent to[

x− y
∇f(x)−∇f(y)

]T [ −2mLI (m + L)I
(m + L)I −2I

] [
x− y

∇f(x)−∇f(y)

]
≥ 0.
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Example: Analysis of the gradient method. Now we apply the above theorem to
analyze the gradient method. For the gradient method, we have A = I, B = −αI, and
C = I. As discussed in the last section, we can choose the following X to guarantee S ≤ 0:

X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
=

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
Now it is straightforward to verify that the condition (3.11) leads to the following condition[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
≤ 0 (3.12)

if we choose P = 1
λ
I. Now we can apply this condition to obtain the convergence rate ρ for

the gradient method with various stepsize choices.

• Case 1: If we choose α = 1
L

, ρ = 1− m
L

, and λ = 1
L2 , we have[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
−m2

L2
m
L2

m
L2 − 1

L2

]
=

1

L2

[
−m2 m
m −1

]
(3.13)

The right side is clearly negative semidefinite due to the fact that

[
a
b

]T [−m2 m
m −1

] [
a
b

]
=

−(ma− b)2 ≤ 0. Therefore, the gradient method with α = 1
L

converges as

‖xk − x∗‖ ≤
(

1− m

L

)k
‖x0 − x∗‖ (3.14)

• Case 2: If we choose α = 2
m+L

, ρ = L−m
L+m

, and λ = 2
(m+L)2

, we have[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
0 0
0 0

]
(3.15)

The zero matrix is clearly negative semidefinite. Therefore, the gradient method with
α = 2

m+L
converges as

‖xk − x∗‖ ≤
(
L−m
L+m

)k
‖x0 − x∗‖ (3.16)

Notice L ≥ m > 0 and hence 1 − m
L
≥ L−m

L+m
. This means the gradient method with

α = 2
m+L

converges slightly faster than the case with α = 1
L

. However, m is typically

unknown in practice. The step choice of α = 1
L

is also more robust (we will discuss this in
later sections). The most popular choice for α is still 1

L
.

The key message in the above example is that to apply the dissipation inequality for
linear convergence rate analysis, one typically follows two steps:
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1. Choose a proper quadratic supply rate function S satisfying certain desired properties,
e.q. S(ξk, wk) ≤ 0.

2. Find a positive semidefinite matrix P satisfying (3.11) and obtain a quadratic storage
function V which is then used to construct the dissipation inequality.

More importantly, many other optimization methods in the form of (3.1) with well-chosen
(A,B,C) can be analyzed using similar ideas. We will discuss this in next lectures.

3.3.4 Graphical Interpretation and Conservatism Reduction

G

∆

v

-

w

�

-

- S ≤ 0

Figure 3.2. Removing ∆ by Enforcing the Supply Rate Condition S ≤ 0

When analyzing Fu(G,∆), we aim to draw conclusions on the pair (v, w) in the set
{(v, w) : v = G(w), w = ∆(v)}. If for any w = ∆(v), we have S ≤ 0, then we have

{(v, w) : v = G(w), w = ∆(v)} ⊂ {(v, w) : v = G(w), S ≤ 0} (3.17)

If we can prove ξk converges at a certain linear rate for any pair (v, w) in the set {(v, w) :
v = G(w), S ≤ 0}, then we guarantee that ξk converges at the same linear rate for any pair
(v, w) satisfying v = G(w) and w = ∆(v) simultaneously. Hence we can completely remove
the troublesome element ∆ from our analysis by enforcing the condition S ≤ 0. A graphical
interpretation for this idea is shown in Figure 3.2. We still have v = G(w). But we remove
∆ by enforcing the inequality S ≤ 0.

Obviously, we are looking at a bigger set {(v, w) : v = G(w), S ≤ 0}. How conservative
such a relaxation is depends on the whether the worst-case trajectories in these two sets
are closed or not. One way to reduce the conservatism in the analysis is to use multiple
supply rate functions. Suppose for any w = ∆(v), we have Sj ≤ 0 for all j = 1, 2, . . . , J .
Obviously, if (v, w) satisfies Sj ≤ 0 for all j, then they also satisfy S1 ≤ 0. Hence the set
{(v, w) : v = G(w), Sj ≤ 0∀j} is contained in the set {(v, w) : v = G(w), S1 ≤ 0}. We have

{(v, w) : v = G(w), w = ∆(v)} ⊂ {(v, w) : v = G(w), Sj ≤ 0∀j} ⊂ {(v, w) : v = G(w), S1 ≤ 0}

Analyzing the trajectories in {(v, w) : v = G(w), Sj ≤ 0∀j} can potentially leads to less
conservative results. Then the key question is how to construct a dissipation inequality when
multiple supply rate conditions are available. We can apply the following theorem.
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Theorem 3. Suppose ξk+1 = Aξk + Bwk and ξ∗ = Aξ∗. In addition, the following supply
rate functions are given

Sj(ξ, w) =

[
ξ − ξ∗
w

]T
Xj

[
ξ − ξ∗
w

]
, for j = 1, 2, . . . , J

If there exists a positive semidefinite matrix P ∈ Rnξ×nξ and non-negative scalers λj s.t.[
ATPA− ρ2P ATPB

BTPA BTPB

]
−

J∑
j=1

λjXj ≤ 0 (3.18)

then we have V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) with V = (ξ−ξ∗)TP (ξ−ξ∗) and S =
∑J

j=1 λjSj.

In addition, if Sj ≤ 0, then V (ξk+1) ≤ ρ2V (ξk).

Proof: Again, we do the same calculations as before.[
ξk − ξ∗
wk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
−

J∑
j=1

λjXj

)[
ξk − ξ∗
wk

]
≤ 0

Notice we have V (ξk+1) =

[
ξk − ξ∗
wk

]T [
ATPA ATPB
BTPA BTPB

] [
ξk − ξ∗
wk

]
. This immediately leads

to the desired conclusion.

For fixed (A,B,Xj, ρ), the condition (3.18) is linear in P and λj. Hence it is still an LMI
which can be solved efficiently with SDP solvers.

Why is (3.18) less conservative than (3.11)? If only one supply rate condition is used
(let’s say we just use X1), the resultant LMI condition is just (3.11) with X = X1. In this
case, if (3.11) is feasible, then (3.18) is also feasible with λ1 = 1, and λj = 0 (j 6= 1) (we
just choose the same P ). The reverse direction is not true. If (3.18) is feasible, (3.11) with
X = X1 may not be feasible. Introducing multiple supply rate conditions helps in many
situations. In addition, implementing (3.18) is as easy as implementing (3.11). Therefore,
it is almost free to include extra supply rate conditions if we only care about obtaining
numerical rate certifications. Of course, adding more decision variables could cause trouble
for analytical rate proofs. Therefore, a more practical way of doing things is to first use
numerical implementation to figure out a minimum number of relevant supply rate conditions
and then start analytical proofs with those supply rate conditions.

3.4 Supply Rate and Quadratic Constraints

Now we give more discussions on how to construct supply rate conditions. Many supply
rate conditions have already been documented in the controls literature. We will look at a
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few basic ones including small gain, passivity, and sector bound. These conditions are also
called “quadratic constraints”. For simplicity, we will first talk about the pointwise versions
of these conditions. Then we will briefly discuss the “integral” versions of these conditions
which are the so-called integral quadratic constraints (IQCs).

3.4.1 Pointwise Quadratic Constraints

Consider a perturbation operator ∆ that maps v to w in a static manner, i.e. wk is completely
determined by vk. The pointwise quadratic constraint just enforces the following inequality
on the input/output pair of ∆:[

vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0, (3.19)

where M is a symmetric matrix, and (w∗, v∗) are typically determined by the fixed points
of the feedback interconnection Fu(G,∆). The terminology “pointwise” just means that
we require the above inequality to hold for all k. Clearly, many supply rate conditions
that we have used so far are in the form of such pointwise quadratic constraints. Suppose
vk − v∗ = C(ξk − ξ∗). Then the quadratic constraint (3.19) just gives the following supply
rate condition [

ξk − ξ∗
wk − w∗

]T([
C 0
0 I

]T
M

[
C 0
0 I

])[
ξk − ξ∗
wk − w∗

]
≤ 0.

For now, we just focus on how to obtain the quadratic constraint (3.19).

3.4.2 Small Gain

Suppose ∆ is bounded in the sense that we have ‖wk − w∗‖ ≤ L‖vk − v∗‖. The parameter L
can be viewed as the input-output gain of the operator ∆. The small gain bound ‖wk − w∗‖ ≤
L‖vk − v∗‖ is equivalent to the quadratic inequality ‖wk − w∗‖2 − L2‖vk − v∗‖2 ≤ 0 which
can be rewritten as the following quadratic constraint:[

vk − v∗
wk − w∗

]T [−L2I 0
0 I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.20)

This is the most commonly-used quadratic constraint. Now let’s see a few examples.

• Uncertainty in a multiplicative form: Let ∆ map v to w as wk = δkvk where δk is a
matrix changing with k. If we know the Frobenius norm of δk is bounded above by L
for all k, then we have the small gain bound (3.20) for (v∗, w∗) = (0, 0).

• Gradients of L-smooth functions: Let ∆ map v to w as wk = ∇f(vk) where f is
L-smooth. Then we have the small gain bound (3.20) holds for any reference point
(v∗, w∗) satisfying w∗ = ∇f(v∗).
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3.4.3 Passivity

In its simplest form, passivity can be used to describe a function that is in the first and third
quadrants. For illustrative purposes, consider a scaler case. Suppose wk = φ(vk) where the
function φ : R→ R satisfies φ(0) = 0 and is in the first and third quadrants. Clearly vk and
wk are both scalers in this case. If vk ≥ 0, we have wk ≥ 0. If vk ≤ 0, we have wk ≤ 0.
Hence we always have wT

k vk ≥ 0. This is the basic form of passivity.
A slightly more general form of passivity gives the constraint (wk − w∗)T(vk − v∗) ≥ 0

when (vk, wk) are vectors and (potentially non-zero) reference points (v∗, w∗) are used. The
passivity condition can be rewritten as the following quadratic constraint (verify it!):[

vk − v∗
wk − w∗

]T [
0 −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0. (3.21)

Example: Gradients of Convex Functions. Let ∆ map v to w as wk = ∇f(vk) where
f is a convex function. By definitions, the following inequalities hold for any (vk, v

∗):

f(vk)− f(v∗) ≥ ∇f(v∗)T(vk − v∗)
f(v∗)− f(vk) ≥ ∇f(vk)

T(v∗ − vk)

Summing the above two inequalities directly leads to the passivity condition (wk−w∗)T(vk−
v∗) ≥ 0. Therefore, gradients of convex functions satisfy the passivity condition.

3.4.4 Sector Bound

Originally sector bound was used to describe a function that is in a sector formed by two
lines whose slopes are m and L. First we consider a scaler case. Suppose wk = φ(vk) where
the function φ : R→ R satisfies φ(0) = 0 and is in a sector formed by two lines whose slopes
are m and L. For simplicity, we assume L ≥ m. Clearly the sector assumption just ensures
(Lvk − wk)T(wk −mvk) ≥ 0. This is the basic form of the sector bound condition.

Now we can introduce the more general form of the sector bound condition that gives the
constraint (L(vk − v∗)− (wk − w∗))T (wk − w∗ −m(vk − v∗)) ≥ 0 when (vk, wk) are vectors
and the reference points (v∗, w∗) are allowed to be non-zero. The sector bound condition
can be rewritten as the following quadratic constraint (verify it!):[

vk − v∗
wk − w∗

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.22)

Example: Gradients of L-Smooth m-Strongly Convex Functions. Let ∆ map v to
w as wk = ∇f(vk) where f is L-smooth and m-strongly convex. Then ∆ satisfies the sector
bound condition (3.25). We have used this condition to prove the linear convergence rate of
the gradient method in the previous lectures.
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3.4.5 Integral Quadratic Constraints

In general, ∆ is just an operator that maps a sequence {vk} to another sequence {wk}. In
controls literature, we typically confine ∆ to be a causal operator in the sense that wk is
completely determined by {v0, v1, . . . , vk}. Here ∆ is not static anymore. There may be
dynamics involved in ∆. Examples include norm-bounded LTI uncertainty and time-varying
delays. For such type of ∆, the pointwise quadratic constraints no longer hold. However,
the quadratic constraints may hold when we sum them. Specifically, the integral quadratic
constraints (IQCs) just enforce the following inequality for any N ,

N∑
k=0

[
vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0, (3.23)

Originally the above type of quadratic constraints were developed in continuous-time
domain where the quadratic forms are integrated over the time horizon. So it is called
“integral” quadratic constraints. For discrete-time operators, we just sum things up. We
require (3.23) to hold for any N . In controls literature, this type of constraints are “hard”
IQCs. We will briefly talk about “soft” IQCs in some future lecture when we discuss the
KYP lemma. For now, we focus on hard IQCs that are in the form of (3.23). Hard IQCs can
be directly incorporated into the dissipation inequality framework. Typically hard IQCs lead
to a supply rate condition

∑N
k=0 S(ξk, wk) ≤ 0. Suppose we have constructed a dissipation

inequality V (ξk+1) − V (ξk) ≤ S(ξk, wk). Now we do not have S ≤ 0 for all k. However,
we can first sum up the dissipation inequality from k = 0 to N to get V (ξN+1) ≤ V (ξ0) +∑N

k=0 S(ξk, wk). Now using the new supply rate condition
∑N

k=0 S(ξk, wk) ≤ 0, we obtain
V (ξN+1) ≤ V (ξ0). Hence the internal energy is bounded. The physical interpretation is
that as long as the total energy supplied to the system (which is equal to

∑N
k=0 S(ξk, wk))

is non-positive, the internal energy is not going to be larger than the initial energy. We will
talk about how to use IQCs for convergence rate analysis later. There is a routine for that.

IQCs are more general than pointwise quadratic constraints. Whenever we have
the pointwise quadratic constraint (3.19), we immediately have an IQC in the form of (3.23)
by summing the constraints from k = 0 to N . The reverse direction is not always true. When
∆ has dynamics and memory, it is very common that we will only be able to construct IQCs.

Example: A general version of small gain bound. Consider a general causal operator
∆. A general version of the small gain bound enforces the following inequality for the
input/output pair of ∆:

N∑
k=0

‖wk − w∗‖2 ≤ L2

N∑
k=0

‖vk − v∗‖2.
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This bound is equivalent to the following IQC:

N∑
k=0

[
vk − v∗
wk − w∗

]T [−L2I 0
0 I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.24)

In general, when ∆ is the so-called “bounded” operator, we will always have the above small
gain IQC. For example, if ∆ is an unknown stable LTI system whose H∞ norm is L, then
we will not have a pointwise small gain bound but (3.24) still holds with v∗ = w∗ = 0. You
can verify a similar fact when ∆ is a time-varying delay. In many situations, even for static
∆, we can construct useful IQCs to complement the use of pointwise constraints. We will
see more examples in future lectures.

3.4.6 Redundancy in Quadratic Constraints

It is OK to allow some redundancy when choosing the quadratic constraints. We will il-
lustrate this by an example. Recall that the sector bound condition gives the following
quadratic inequality with L ≥ m:[

vk − v∗
wk − w∗

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.25)

First, we discuss the connections between sector bound and other conditions.

1. If we let m = 0, we obtain the constraint[
vk − v∗
wk − w∗

]T [
0 −LI
−LI 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.26)

2. If we let L→∞, we have m
L
→ 0 and (3.25) reduces to[

vk − v∗
wk − w∗

]T [
2mI −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0. (3.27)

3. If we let L→∞ and m = 0, we recover the passivity condition[
vk − v∗
wk − w∗

]T [
0 −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0. (3.28)

4. If we let m = −L, (3.25) reduces to the small gain bound:[
vk − v∗
wk − w∗

]T [−L2I 0
0 I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.29)
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An important fact. Given two symmetric matrices X1 and X2, if we can find λ ≥ 0 such

that X2 ≤ λX1, then the quadratic constraint

[
vk − v∗
wk − w∗

]T
X1

[
vk − v∗
wk − w∗

]
≤ 0 will directly

guarantee the other constraint

[
vk − v∗
wk − w∗

]T
X2

[
vk − v∗
wk − w∗

]
≤ 0. This is one version of the

famous S-procedure. Based on this procedure, if (v, w) satisfies the sector bound (3.25)
with L ≥ m, then (v, w) will also satisfy the bound[

vk − v∗
wk − w∗

]T [
2m0L0I −(m0 + L0)I

−(m0 + L0)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0. (3.30)

for any m0 ≤ m and L0 ≥ L. To prove this, we use the key relationship[
2mL0I −(m+ L0)I

−(m+ L0)I 2I

]
=
L0 −m
L−m

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
− L0 − L
L−m

[
2m2I −2mI
−2mI 2I

]
Therefore, if (3.25) holds and L0 ≥ L ≥ m, we have[

vk − v∗
wk − w∗

]T [
2mL0I −(m+ L0)I

−(m+ L0)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0.

We apply the same trick again and will get (3.30).

A consequence of the above fact is that if we know L ≥ m ≥ 0, the sector bound (3.25)
directly guarantees other constraints including (3.26), (3.27), (3.28), and (3.29). This leads
to an important question: Which quadratic constraint shall we use to construct
the dissipation inequality? Intuitively, (3.25) is the general one and should be used.
However, a combined use of (3.26), (3.27), and (3.28) may actually simplify the convergence
rate proofs. It seems that (3.28) is a redundant constraint here, but sometimes adding this
constraint can simplify the analytical proof.

Let’s look at the analysis of the gradient method again. Suppose f is L-smooth and
m-strongly convex. If we use (3.25), the resultant LMI condition is[

1− ρ2 −α
−α α2

]
− λ1

[
2mL −(m+ L)

−(m+ L) 2

]
≤ 0 (3.31)

where λ1 ≥ 0 is the only decision variable. If we combine (3.26), (3.27), and (3.28), the LMI
condition becomes[

1− ρ2 −α
−α α2

]
−
(
λ1

[
0 −L
−L 2

]
+ λ2

[
2m 1
1 0

]
+ λ3

[
0 −1
−1 0

])
≤ 0 (3.32)

where non-negative scalers (λ1, λ2, λ3) are all decision variables. In (3.31), we only have one
decision variable λ1. It is more difficult to figure out which negative semidefinite matrix
we should set the left side of (3.31) to. On the other hand, (3.32) has three variables and
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actually we can set the left side of (3.32) to be a diagonal matrix whenever α ≤ 1
L

. Given
any α and ρ2 = (1 − mα)2, we just set λ1 = α2, λ2 = α, and λ3 = α − Lα2, and the left

side of (3.32) just becomes

[
−m2α2 0

0 −α2

]
≤ 0. This result can also be obtained by solving

(3.31). However, how to set up the left side of (3.31) is a little bit trickier.

Key message. Notice λ3 in (3.32) is just set up to cancel the off-diagonal terms of the
resultant 2× 2 matrix. We can clearly see that adding the redundant constraint (3.28) just
helps us to cancel the off-diagonal terms and simplify the proof a little bit.

3.4.7 The Feedback Representation is Not Unique!

The feedback representation for an optimization method is not unique. Different feedback
formulations lead to different LMIs that require different supply rates. Some feedback rep-
resentations may yield simpler convergence proofs than the others. We will use the gradient
method as an example to illustrate this point.

In the previous lectures, we modeled the gradient method as Fu(G,∆) where ∆ = ∇f ,
and G is governed by an LTI model with (A,B,C) = (I,−αI, I). The matrix X in the

supply rate is

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
, and the resultant LMI condition is (3.31). We

have to handle the non-zero off-diagonal term when choosing λ.
Alternatively, we can model the gradient method as the following feedback model:

ξk+1 = wk

vk = ξk

wk = vk − α∇(vk)

In this case, G is described by an LTI model with A = 0, B = I, and C = I. The perturbation
operator ∆ maps v to w as wk = vk − α∇(vk). Since A = 0, we have ATPB = BTPA = 0.
Therefore, we can formulate the following new LMI condition:[

−ρ2 0
0 1

]
≤ λX (3.33)

where X is a 2× 2 symmetric matrix such that[
vk − v∗
wk − w∗

]T
(X ⊗ I)

[
vk − v∗
wk − w∗

]
≤ 0. (3.34)

How to obtain X from existing quadratic constraints on ∇f? When f is L-smooth
and m-strongly convex, we know the following quadratic constraint holds[

vk − v∗
∇f(vk)−∇f(v∗)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗

∇f(vk)−∇f(v∗)

]
≤ 0. (3.35)
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However, now we have wk = vk − α∇f(vk). Can we just manipulate the above quadratic
constraint to describe the relationship between v and w? The answer is yes! Just notice
∇f(vk) = (vk−wk)/α (this is equivalent to wk = vk−α∇f(vk)). Therefore, there is a linear

mapping from

[
vk − v∗
wk − w∗

]
to

[
vk − v∗

∇f(vk)−∇f(v∗)

]
:

[
vk − v∗

∇f(vk)−∇f(v∗)

]
=

[
I 0
1
α
I − 1

α
I

] [
vk − v∗
wk − w∗

]
(3.36)

where w∗ = v∗ = x∗. All we need to do is to substitute the above equation into (3.35) and
obtain X as

X =

[
I 0
1
α
I − 1

α
I

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
I 0
1
α
I − 1

α
I

]
=

1

α2

[
2(Lα− 1)(mα− 1) (m+ L)α− 2

(m+ L)α− 2 2

]
Consequently, the LMI (3.33) becomes[

−ρ2 0
0 1

]
≤ λ

α2

[
2(Lα− 1)(mα− 1) (m+ L)α− 2

(m+ L)α− 2 2

]
(3.37)

This LMI leads to simpler convergence rate proofs of the gradient method for the following
two stepsize choices.

• Case 1: For α = 2
m+L

, the off-diagonal term in (3.37) just becomes 0, and we only need

to look at the diagonal terms. Setting λ = α2

2
leads to ρ = L−m

L+m
.

• Case 2: For α = 1
L

, the LMI condition becomes[
−ρ2 0

0 1

]
≤ L2λ

[
0 m

L
− 1

m
L
− 1 2

]
We can simply choose λ = 1

L2 and ρ = 1 − m
L

to satisfy the above LMI. Although we
have non-zero off-diagonal terms here, the first entry of the LMI depends on ρ2 and is
independent of λ. This makes the analytical proof simpler.

Key message. From the above example, we can see that the feedback representations for
an optimization method are not unique and some of them may lead to simpler convergence
rate proofs. Although the feedback representation can be different, one can still obtain
quadratic constraints for the new ∆ by manipulating known quadratic constraints.
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3.4.8 Manipulating IQCs via Linear Mapping

The example in the last section actually demonstrates an important trick. Suppose we have
some IQC (notice IQCs are more general than pointwise quadratic constraints) to couple hk
and uk, i.e.

N∑
k=0

[
hk − h∗
uk − u∗

]T
M

[
hk − h∗
uk − u∗

]
≤ 0. (3.38)

If we have the following linear mapping[
hk − h∗
uk − u∗

]
= H

[
vk − v∗
wk − w∗

]
, (3.39)

then we can immediately obtain an IQC for v and w:

N∑
k=0

[
vk − v∗
wk − w∗

]T
(HTMH)

[
vk − v∗
wk − w∗

]
≤ 0. (3.40)

3-19


