
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 4
Connection between Stochastic Optimization Methods and Feedback Systems

Lecturer: Bin Hu, Date:09/03/2020

In this lecture, we start to talk about stochastic optimization methods for the following
finite-sum optimization

minimize
x∈Rp

f(x) :=
1

n

n∑
i=1

fi(x) (4.1)

where f : Rp → R is a strongly-convex objective function. We will introduce several pop-
ular finite-sum algorithms and discuss how these methods can be represented as feedback
dynamical systems as shown in Figure 4.1. In the next lecture, we will discuss how the dissi-
pation inequality approach covered in the previous lecture can be used to unify the analysis
of stochastic optimization methods.

G

∆

v

-

w

�

Figure 4.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

4.1 Motivations: ERM and Supervised Learning

Empirical risk minimization (ERM) is a key paradigm in machine learning and naturally
leads to the finite-sum optimization problem (4.1). Specifically, many supervised learning
tasks, including ridge regression, logistic regression, and support vector machines, can be
formulated as the following empirical risk minimization problem

minimize
x∈Rp

f(x) :=
1

n

n∑
i=1

li(x) + λΩ(x)

Here one wants to fit some prediction/classification model parameterized by x using the
training data. The training set consists of n data points. The task is to fit a model x that
works well for all the “unseen” data.

4-1



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

Interpretations for li(x). The loss function li(x) measures how well x performs on the
i-th data point in the training set. If li(x) is large, it means that the “loss” on the i-th data
point is big and the model x works poorly on this data point. If li(x) is small, it means the
“loss” on the i-th data point is small and the model x works well on this data point. By
minimizing the empirical risk 1

n

∑n
i=1 li(x), one expects the model x to work reasonably well

for training data. This prevents underfitting.

Importance of Ω(x). If we allow the model to be arbitrarily complicated, we can obtain
zero loss on training data but the model will work poorly on the data that have not been seen.
This is called over-fitting. Roughly speaking, the difference between the model performance
on the training data and the unseen data is called generalization error. One way to prevent
overfitting and induce generalization is to add a regularizer Ω(x) that measures the model
complexity. By adding such a term in the cost function, one expects the complexity of
the resultant x is somehow controlled and hence the model x should “generalize” to the
unseen data.1 For example, one can choose Ω(x) = ‖x‖2, and there exists some learning
theory (e.g. stability theory) that can be used to explain how such `2-regularization induces
generalization. Confining the search of x on small norm models can help generalization in
many situations. Sometime Ω(x) is used to induce other desired structures. For example,
the `1-regularization is typically used to induce sparsity.

What is λ? In ERM, λ is a hyperparameter which is tuned to trade off training per-
formance and generalization. For the purpose of this course, let’s say λ is a fixed positive
number. In practice, λ is typically set as a small number between 10−8 and 0.1.

Example 1: Ridge regression. The ridge regression is formulated as an ERM problem
with the following objective function

f(x) =
1

n

n∑
i=1

(aTi x− bi)2 +
λ

2
‖x‖2 (4.2)

where ai ∈ Rp and bi ∈ R are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear relationship
between a and b. One wants to predict b from a as b = aTx. The ridge regression gives
a way to find such x based on the observed pairs of (ai, bi).

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is just the `2-regularizer. It confines

the complexity of the linear predictors you want to use. The high-level idea is that you
want x to work for all (a, b), not just the observed pairs (ai, bi). Again, this is called
generalization in machine learning. So adding such a term can induce the so-called
stability and helps the predictor x to “generalize” for the data you have not seen. You
need to take a machine learning course if you want to learn about generalization.

1What we mean is that the model x should work similarly on the training data and the unseen data.

4-2



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

• What is λ? λ is a hyperparameter which is tuned to trade off training performance
and generalization. Again, λ is typically set as a small number between 10−8 and 0.1.

It is worth mentioning that f is L-smooth and m-strongly convex in this case. It is straight-
forward to verify that

f(x) =
1

2
xT

(
2

n

n∑
i=1

aia
T
i + λI

)
x−

(
2

n

n∑
i=1

biai

)T

x+
1

n

n∑
i=1

b2i

which is a special case of the positive definite quadratic minimization problem. Notice
2
n

∑n
i=1 aia

T
i + λI > 0 and hence f is m-strongly convex and L-smooth (why?). Therefore,

we can apply gradient method to ridge regression, and obtain a convergence rate ρ = 1− 1
κ

where κ is the condition number of the positive definite matrix 2
n

∑n
i=1 aia

T
i + λI.

Example 2: `2-Regularized Logistic regression. The `2-regularized logistic regression
is formulated as an ERM problem with the following objective function

f(x) =
1

n

n∑
i=1

log(1 + e−bia
T
i x) +

λ

2
‖x‖2 (4.3)

where ai ∈ Rp and bi ∈ {−1, 1} are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear “classifier”
between a and b. Let’s say you have collected a lot of images of cats and dogs. You
augment the pixels of any such image into a vector a and wants to predict whether the
image is a cat or a dog. Let’s say b = 1 if the image is a cat, and b = −1 if the image
is a dog. So you want to predict b based on a. You want to find x such that b = 1
when aTx ≥ 0, and b = −1 when aTx < 0. The logistic regression gives a way to find
such x based on the observed feature/label pairs of (ai, bi). You may want to take a
statistics course or a machine learning course if you want to learn more about logistic
regression.

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is the `2-regularizer. It is used

to induce generalization and help x work on all the (a, b) not just the observed data
points (ai, bi).

The function (4.3) is also L-smooth and m-strongly convex.

Other examples. There are many other convex examples including multi-class logistic
regression, support vector machines, elastic nets, and PCA. The ERM problems in deep
learning involve non-convex loss functions. The optimization of deep learning has not been
fully understood and it is an important research topic.

4-3



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

Finite-sum Structure of ERM. The ERM problem is in the form of the finite-sum
optimization (4.1) where f = 1

n

∑n
i=1 fi. If we apply the gradient method or Nesterov’s

method, we need to evaluate ∇f = 1
n

∑n
i=1∇fi for each iteration. In other words, we need

to evaluate the gradient on all the data points. The computation cost for each iteration
scales with O(n). For big data applications, n is typically very large. The per iteration cost
of the gradient method and Nesterov’s method is high. This motivates the use of stochastic
optimization methods that sample one or a small batch of data points for gradient estimate
at every iteration. In stochastic optimization, the computation cost for each iteration does
not depend on n and scales with O(1). The hope is that there will be a lot of redundancy
between data points and these stochastic methods will work well in some average sense in the
long run. We will talk about various stochastic optimization methods and represent them
as feedback interconnections in the next lecture.

4.2 Stochastic Optimization Methods for ERM

A classical way to solve (4.1) is the gradient method, which uses the following iteration:

xk+1 = xk − α∇f(xk) (4.4)

Since f is strongly convex, the gradient method with a well-chosen constant stepsize
converges at a linear rate. To achieve accelerated convergence, we can apply Nesterov’s
method. Both the gradient method and Nesterov’s method require computing a full gradient
∇f(xk) at each step. Hence the iteration cost of these methods scale linearly with n. This
leads to a high iteration cost when the size of the training set is large.

Consequently, stochastic optimization methods become more popular for large-scale ERM
problems. Now we give a few examples.

• Stochastic gradient method: The baseline algorithm for large-scale learning tasks is
the stochastic gradient (SG) method that iterates as

xk+1 = xk − α∇fik(xk) (4.5)

where for each step k, the index ik is sampled uniformly from the set {1, 2, . . . , n}. The
per iteration cost of the SG method is independent of n. At every step k, only one (or a
small batch of) data point is sampled for gradient evaluation. The stochastic gradient
∇fik(xk) is an estimate for the true gradient ∇f(xk). The hope is that in the long run
the stochastic gradient method leads to a solution that works reasonably well in some
average sense. The SG method is the most popular optimization method for large-scale
learning tasks. However, one issue is that the SG method only converges linearly to
some tolerance of the optimum for a well-chosen constant stepsize. Just think about
that initializing the SG method from the optimal point x∗ satisfying ∇f(x∗) = 0.
Notice ∇f(x∗) = 0 does not mean ∇fi(x∗) = 0. Hence the SG method will not stay
at this optimal point even if it is initialized there. The issue is that x∗ is not a fixed

4-4



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

point for the SG method. If diminishing stepsize is used, the SG method will converge
to the optimum at a sublinear rate.

• Stochastic average gradient (SAG): Compared with the stochastic gradient ∇fik(xk),
an average gradient may be used to provide a better estimate for the true gradient.
The basic idea is that one can use a vector yk to memorize the gradient on each data
point as follows

y
(i)
k+1 :=

{
∇fi(xk) if i = ik
y
(i)
k otherwise

. (4.6)

where at each step k, a random training example ik is drawn uniformly from the set
{1, 2, . . . , n}. Hence, at each k, one still only samples one data point and updates y

(i)
k

for that data point. Since the vector y has memorized the gradient on all the data
points, averaging y should lead to a better estimate for the full gradient ∇f . SAG uses
such an average gradient and iterates as

xk+1 = xk − α

(
1

n

n∑
i=1

y
(i)
k+1

)
(4.7)

Therefore, at every step k, SAG first updates y for the average gradient evaluation
and then updated x using the average gradient. With well-chosen constant stepsize α,
SAG converges to the optimal solution of ERM. Why does SAG work? Intuitively, as
xk converges to the optimal point x∗, the change in xk becomes smaller and smaller.

Hence the average value
(

1
n

∑n
i=1 y

(i)
k+1

)
approximates the true gradient better and

better, and eventually converges to the true gradient. The detailed analysis for SAG
is quite lengthy. This motivates the development of SAGA.

• SAGA: The idea is similar to SAG, but the update for xk+1 is modified as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k +

1

n

n∑
i=1

y
(i)
k

)
(4.8)

To see the difference between SAG and SAGA, just notice SAG’s update rule (4.7) can
be rewritten as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k

n
+

1

n

n∑
i=1

y
(i)
k

)
(4.9)

Although the update rules for SAG and SAGA are similar, the convergence rate proof
for SAGA is much simpler. This partially explains why SAGA gets more popular than
SAG. The LMI tools in the controls field can be used to tell which method is easier to
analyze at the early stage of algorithm developments. We will come back to this point
later.

4-5



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

In this lecture, we focus on the above methods. In the next section, we will represent
the above methods as feedback interconnections and comment on other stochastic methods,
e.g. SVRG, Finito, and SDCA. Hopefully you will be convinced that stochastic optimization
methods for ERM are just feedback dynamical systems.

4.3 Stochastic Methods as Feedback Systems

To model stochastic optimization methods as feedback systems, we need to allow either ∆
or G to depend on the sampling index ik. This leads to the following two formulations.

1. We can use an LTI system G and a stochastic perturbation ∆ to form a feedback model
for the SG method (and SVRG-like methods).

2. We can use a dynamical jump system G and a deterministic static nonlinearity ∆ to
form a feedback model for SAGA-like methods.

4.3.1 Using stochastic ∆ to model SG

The SG method can be modeled as a feedback interconnection Fu(G,∆) shown in Figure 4.1
if we choose w = ∆(v) as a stochastic nonlinear mapping wk = ∇fik(vk) and set G to be the
following LTI system

ξk+1 = ξk − αwk
vk = ξk

To see this, we just set ξk = xk. Then the first equation in the above LTI model becomes
xk+1 = xk − αwk = xk − α∇fik(vk) = xk − α∇fik(xk). Notice in the modeling for the
gradient method xk+1 = xk − α∇f(xk), we choose ∆ as a static nonlinearity ∇f . For
the SG method, the perturbation ∆ depends on ik. Therefore, it is not surprising that
the convergence rate proofs for the gradient method and the SG method are quite similar.
Notice that the dissipation inequality approach presented in Lecture 2 can be used to handle
various types of ∆. Actually the stochastic mapping ∇fik can also be directly handled via
dissipation inequality as long as we are able to construct some informative supply rates for
such a mapping.

In later lectures, we will show that standard assumptions (smoothness, convexity, etc)

on fi can be manipulated as quadratic supply rate conditions E
[
ξk
wk

]T
X

[
ξk
wk

]
≤ M with

well-chosen X and M . Such supply rate conditions can be used to recover standard rate
bounds for the SG method via our analysis routine.

Extensions. Many other stochastic methods can also be modeled as feedback intercon-
nections of an LTI system G and a stochastic perturbation ∆. To handle stochastic gradient
with momentum, we only need to modify the matrices (A,B,C) in the LTI model of G. To
handle SVRG-like methods, we only need to modify ∆.

4-6



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

4.3.2 Jump system models for SAGA-like methods

SAGA and SAG can be rewritten as special cases of the following general jump system

ξk+1 = Aikξk +Bikwk

vk = Cξk

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)


(4.10)

The above general jump system model is just an interconnection of a linear jump system G

and a static nonlinearity ∆ that maps v to w as wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

. Here, ∆ depends on the

gradient information of all the data points in the training set. It seems that the computation
of wk at each k requires gradient information on all the data points. However, Bik is typically
sparse for SAGA-like methods. Therefore, Bikwk only involves gradient evaluation on one
data point, ensuring the low per-iteration cost of SAGA-like methods.

The feedback interconnection Fu(G,∆) provides a unified model for SAGA-like methods
in the sense that we can rewrite SAG, SAGA, and many other variants in this form by
properly choosing (Aik , Bik , C) for the linear jump system G. Now we show how to choose
(Aik , Bik , C) for SAG and SAGA.

• Jump system model for SAG: First note that the gradient update rule for SAG is
(4.6): y

(i)
k+1 = ∇fi(xk) if i = ik and y

(i)
k+1 = y

(i)
k otherwise. Define the following stacked

vector:

yk =


y
(1)
k

y
(2)
k
...

y
(k)
n

 (4.11)

At every step, the y information is almost unchanged except on the ik-th data point.
This can be summarized by the jump system iteration:

yk+1 =
(
(In − eikeTik)⊗ Ip

)
yk +

(
(eike

T
ik

)⊗ Ip
)
wk (4.12)

where wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]
, and ei is an n-dimensional vector whose i-th

entry is 1 and other entries are 0. Here the notation “⊗” denotes the Kronecker
product.2 Clearly, eie

T
i is a matrix whose (i, i)-th entry is 1 and all other entries are 0.

2To illustrate how Kronecker product works, just notice

[
a b
c d

]
⊗ Ip =

[
aIp bIp
cIp dIp

]
.

4-7



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

Now we can rewrite (4.9) as

xk+1 = xk −
α

n
(eTik ⊗ Ip)(wk − yk)−

α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− eik)T ⊗ Ip

)
yk −

α

n
(eTik ⊗ Ip)wk

(4.13)

where e is a vector whose entries are all 1. Since vk = xk, we can combine (4.12) and
(4.13) to obtain the following jump system G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− eik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−α

n
eTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (4.14)

Since we already have w = ∆(v), we can represent SAG as Fu(G,∆) where G is
described by the above linear jump system model. Notice in this case the state of G is

ξk :=

[
yk
xk

]
.

• Jump system model for SAGA: Notice the update of yk is still captured by (4.12)

with wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]T

. Now we can rewrite (4.8) as

xk+1 = xk − α(eTik ⊗ Ip)(wk − yk)−
α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− neik)T ⊗ Ip

)
yk − α(eTik ⊗ Ip)wk

(4.15)

Since vk = xk, we can combine (4.12) and (4.15) to obtain the following jump system
G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− neik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−αeTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (4.16)

Again, we have ξk =

[
yk
xk

]
. Putting the above model for G in a feedback loop with ∆

directly realizes SAGA as a special case of (4.10).

Fixed points of the jump system models for SAG and SAGA. Suppose x∗ sat-
isfies ∇f(x∗) = 0. Then we define w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
. Next we can set

ξ∗ =
[
(w∗)T (x∗)T

]T
, and v∗ = x∗. Using the fact that

∑n
i=1∇fi(x∗) = 0, we can ver-

ify that (ξ∗, w∗, v∗) provides a fixed point for the jump system model of SAG and SAGA.

If ξk converges to ξ∗, then xk converges to x∗ and y
(i)
k converges to ∇fi(x∗). It SAGA and

SAG are initialized at such fixed points, they are going to stay there. This partially fixes
the issue of the SG method.

4-8



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

Extensions. Many other SAGA-like methods including Finito, SDCA, and point-SAGA
can be directly modeled using the above jump system model. We only need to modify the
matrices (Aik , Bik , C).

4.4 Unified analysis via Dissipation Inequality

In Lecture 3, we have presented the dissipation inequality approach as a general analysis
tool for feedback systems. In today’s lecture, we will discuss how to tailor the dissipation
inequality approach for stochastic finite-sum methods.

Suppose G is an LTI system satisfying ξk+1 − ξ∗ = A(ξk − ξ∗) + B(wk − w∗). Suppose

we know S =

[
ξk − ξ∗
wk − w∗

]T
X

[
ξk − ξ∗
wk − w∗

]
≤ 0 for any w = ∆(Cξ).3 If there exists a positive

definite matrix P s.t. [
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0, (4.17)

then we have V (ξk+1) ≤ ρ2V (ξk) + S ≤ ρ2V (ξk) where V (ξk) := (ξk − ξ∗)TP (ξk − ξ∗).
This establishes the linear convergence rate bound ‖ξk − ξ∗‖ ≤

√
cond (P )ρk‖ξ0 − ξ∗‖. We

have already discussed how to perform such an analysis for the gradient method. To han-
dle stochastic finite-sum methods, we only need to make some minor modification to the
dissipation inequality approach. We first present the high-level ideas.

• Interconnection of an LTI system G and stochastic ∆: In this case, one typically
will be able to construct some expected supply rate condition ES ≤M . Then the LMI
condition (4.17) can still be used to construct a (almost sure) dissipation inequality
V (ξk+1) ≤ ρ2V (ξk) + S. How to obtain a convergence bound from such a dissipation
inequality? Since the supply rate condition holds in the average sense, we have to
take expectation of the dissipation inequality and obtain EV (ξk+1) ≤ ρ2EV (ξk) + ES.
Depending on what M is , this expected dissipation inequality can be used to prove
various things. For example, when analyzing the stochastic gradient method for smooth
strongly-convex fi, we will figure out that M is just a constant, and the dissipation
inequality can be iterated to show EV (ξk) ≤ ρ2V (ξ0) + M

1−ρ2 . This just states that the
stochastic gradient method converges linearly to a small ball whose size is controlled by
M

1−ρ2 . Notice in this case, the supply rate is not decreasing to 0 and the total internal
energy is not going to converge to 0.

• Interconnection of a jump system G and a deterministic nonlinearity ∆: As
discussed in Lecture 3, we can use the property of ∆ to construct some quadratic supply
rate conditions and then analyze the feedback interconnection using the following LMI

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

]
−X

)
≤ 0.

3Here we assume vk = Cξk and hence w = ∆(v) = ∆(Cξ).

4-9



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

Here we assume X is independent of ik. This type of supply rate conditions arise
naturally when the matrix C in G does not depend on ik and ∆ is deterministic. The
above LMI can be directly applied to SAGA-like methods.

4.4.1 Dissipation Inequality for Stochastic Gradient

Now we present a detailed analysis for the SG method under the following two assumptions:

1. f is m-strongly convex.

2. fi is L-smooth and convex for all i.

Under these two assumptions, we can show that SGD satisfies a bound in the following
form:

E‖xk − x∗‖2 ≤ ρ2k‖x0 − x∗‖2 +H (4.18)

where ρ2 = 1− 2mα +O(α2) and H = O(α). Here ρ2 quantifies the convergence speed and
H quantifies the accuracy. Therefore, for SGD, there is a fundamental trade-off between
the convergence speed and the accuracy. If one wants a very accurate solution, one has to
decrease α so that H is decreased. However, ρ2 increases as α decreases and the convergence
speed becomes slower.

As mentioned before, the supply rate condition used to prove (4.18) has a form ES ≤M .
Recall that the SG method is equivalent to a feedback system Fu(G,∆). Here ∆ is a
stochastic operator mapping v to w as wk = ∇fik(vk). In addition, G is governed by an
LTI model with A = I, B = −αI, and C = I. We emphasize that for the SG method we
have ξk+1 − ξ∗ = A(ξk − ξ∗) +Bwk and we do not shift wk to (wk −w∗). Again, we perform
our analysis in two steps. In Step 1, we construct the supply rates. In Step 2, we solve an
LMI to construct the dissipation inequality.

1. Based on wk = ∇fik(vk), we can show the following inequalities:

E
[
vk − x∗
wk

]T [
0 −LI
−LI I

] [
vk − x∗
wk

]
≤ 2

n

n∑
i=1

‖∇fi(x∗)‖2 = M (4.19)

E
[
vk − x∗
wk

]T [
2mI −I
−I 0

] [
vk − x∗
wk

]
≤ 0 (4.20)

We skip the proofs here. Now we just set X1 =

[
0 −LI
−LI I

]
and X2 =

[
2mI −I
−I 0

]
.

Notice that it is the first supply rate that causes the convergence issue for the SG
method. Since this supply rate keeps on delivering energy to the system, the internal
energy does not decrease to 0.

4-10



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

2. Now we test if there exists P > 0 and non-negative scalers (λ1, λ2) such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
− λ1X1 − λ2X2 ≤ 0. (4.21)

If so, we have

E(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2E(ξk − ξ∗)TP (ξk − ξ∗)

≤λ1E
[
ξk − ξ∗
wk

]T
X1

[
ξk − ξ∗
wk

]
+ λ2E

[
ξk − ξ∗
wk

]T
X2

[
ξk − ξ∗
wk

]
≤λ1M

For simplicity, we can choose P = I. Recall for SGD we have A = I and B = −αI.
Hence (4.21) is equivalent to[

1− ρ2 −α
−α α2

]
− λ1

[
0 −L
−L 1

]
− λ2

[
2m −1
−1 0

]
≤ 0 (4.22)

Now we set the left side to be a zero matrix. We have λ1 = α2, λ2 = α − λ1L, and
ρ2 = 1− 2mλ2 = 1− 2mα + 2mLα2. Now the dissipation inequality leads to

E‖xk+1 − x∗‖2 ≤ ρ2E‖xk − x∗‖2 + λ1M

Iterating the above bound leads to

E‖xk − x∗‖2 ≤ρ2E‖xk−1 − x∗‖2 + λ1M

≤ρ4E‖xk−1 − x∗‖2 + (ρ2 + 1)λ1M

≤ρ2kE‖x0 − x∗‖2 +

(
∞∑
t=0

ρ2t

)
λ1M

=ρ2kE‖x0 − x∗‖2 +
λ1M

1− ρ2

From Step 2, we have ρ2 = 1−2mα+2mLα2 = 1−2mα+O(α2), and H = λ1M
1−ρ2 = O(α).

This leads to the desired conclusion (4.18).

4.4.2 Dissipation Inequality for SAGA-like Methods

To show (4.10) converges to its fixed point, we are actually looking at the following iteration:

ξk+1 − ξ∗ = Aik(ξk − ξ∗) +Bik(wk − w∗)
vk − v∗ = C(ξk − ξ∗)

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)


(4.23)

Again, we can follow the two steps in the dissipation inequality framework.

4-11



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

1. First, we try to construct the following supply rate conditions for j = 1, . . . , J .[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
≤ 0. (4.24)

The supply rate constructions typically require using the matrix C and some properties
of ∆. We will cover this in more details in next section. For now, let’s look at one
example. Suppose we know f1 is L-smooth and m-strongly convex. Hence we know[

vk − v∗
∇f1(vk)−∇f1(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f1(vk)−∇f1(v∗)

]
≤ 0. (4.25)

Now notice we have vk − v∗ = C(ξk − ξ∗) and ∇f1(vk)−∇f1(w∗) = (eT1 ⊗ I)(wk −w∗)
where e1 is a vector whose first entry is 1 and all other entries are 0. Therefore, we
have [

vk − v∗
∇f1(vk)−∇f1(v∗)

]
=

[
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
Substituting the above equation into (4.25) leads to[

ξk − ξ∗
wk − w∗

]T [
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
≤ 0

Therefore, we can just chooseX1 =

[
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

]
.

Clearly X1 depends on m, L, and C. You can imagine that properties of fi and f can
all be transformed into quadratic inequalities in the form of (4.24) via similar algebraic
manipulations.

2. Now we can perform our LMI-based analysis. If there exists a positive definite matrix
P and non-negative scalers λj s.t.

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λjXj,

then we have the expected dissipation inequality EV (ξk+1) ≤ ρ2EV (ξk) + ES(ξk, wk)
where the storage function is defined as V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) and the supply
rate S is defined as

S(ξk, wk) =
J∑
j=1

λj

[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
.

The proof for this part is based on standard Lyapunov arguments you have seen
many times. We just left and right multiply both sides of the LMI condition with

4-12



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

[
(ξk − ξ∗)T (wk − w∗)T

]
and

[
ξk − ξ∗
wk − w∗

]
. This directly leads to the desired dissipa-

tion inequality. The non-negativity of λj guarantees S ≤ 0 and hence we have the
linear convergence bound EV (ξk) ≤ ρ2kEV (ξ0). For given (Ai, Bi, ρ) and Xj, out test-
ing condition is linear in the decision variables P and λj, and can be solved as LMIs.

Numerically solving LMIs can be done by existing semidefinite program solvers. However,
analytically solving the LMIs may require case-by-case constructions of P . The good news
is that we can use the numerical solutions of LMIs to guide our constructions of analytical
proofs. We will see a few examples in Homework 1.

Once we have the supply rate conditions, the constructions of dissipation inequality
can be somehow routinized by solving LMIs. Now we are ready to construct supply rates
for stochastic finite-sum methods. In many situations, the analysis of stochastic finite-sum
methods only require simple supply rates that can be obtained by manipulating the quadratic
constraints covered in the last lecture. First we will focus on SAGA-like methods. Then we
will briefly discuss SVRG which is another important finite-sum method.

4.5 Supply Rates for SAGA-Like Methods

Recall that SAGA-like methods can be represented as Fu(G,∆) where G is a jump system
and the operator ∆ maps v to w as

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

 (4.26)

For this operator ∆, we want to construct pointwise quadratic constraints on the input/output
pair (v, w): [

vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0, (4.27)

where M is a symmetric matrix, and (w∗, v∗) are determined by the fixed points of the feed-
back interconnection Fu(G,∆). For SAGA, we know v∗ = x∗ and w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
where ∇f(x∗) = 1

n

∑n
k=1∇fi(x∗) = 0.

Again, if we know vk − v∗ = C(ξk − ξ∗), the above quadratic constraint (4.27) just gives
the following supply rate condition[

ξk − ξ∗
wk − w∗

]T([
C 0
0 I

]T
M

[
C 0
0 I

])[
ξk − ξ∗
wk − w∗

]
≤ 0.

Hence we just focus on how to obtain the quadratic constraint (4.27). Various assumptions
on fi and f can be converted into inequalities in the form of (4.27). Now let’s look at a few
concrete examples.

4-13



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

• Assumption 1: fi is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (4.28)

We need to make use of the following key relation:

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)

 (4.29)

which leads to ∇fi(vk)−∇fi(v∗) = (eTi ⊗ I)(wk − w∗) where ei is a vector whose i-th
entry is 1 and all other entries are 0. Therefore, we have[

vk − v∗
∇fi(vk)−∇fi(v∗)

]
=

[
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
(4.30)

Substituting the above equation into (4.28) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just chooseM =

[
I 0p×(np)
0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 eTi ⊗ I

]
.

• Assumption 2: f is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇f(vk)−∇f(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f(vk)−∇f(v∗)

]
≤ 0. (4.31)

Based on (4.29), we have ∇f(vk)−∇f(v∗) = 1
n
(eT ⊗ I)(wk − w∗) where e :=

∑n
i=1 ei

is a vector whose entries are all 1. Therefore, we have[
vk − v∗

∇f(vk)−∇f(v∗)

]
=

[
I 0p×(np)
0 1

n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
Substituting the above equation into (4.31) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0.

Therefore, we can just chooseM =

[
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

]
.

4-14



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

• Assumption 3: fi is L-smooth but may not be convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [−L2I 0
0 I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (4.32)

Similarly, we can substitute (4.30) into (4.32) and get[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just choose M =

[
I 0p×(np)
0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)
0 eTi ⊗ I

]
.

• Assumption 4: f satisfies the “one-point convexity” condition:[
vk − x∗
∇f(vk)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − x∗
∇f(vk)

]
≤ 0. (4.33)

Notice the difference between (4.33) and (4.31) is that v∗ is allowed to be any point
in (4.31). Due to the facts v∗ = x∗ and 1

n
(eT ⊗ I)w∗ = 1

n

∑n
i=1∇fi(x∗) = 0, we still

have ∇f(vk) − ∇f(v∗) = 1
n
(eT ⊗ I)(wk − w∗). Similar to before, we can just choose

M =

[
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

]
.

How to use the above quadratic constraints? Depending on the assumptions on fi
and f , we can choose multiple Mj (j = 1, . . . , J) accordingly and formulate the following
LMI

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]
,

where the positive definite matrix P and non-negative scalers λj are decision variables. When
the assumptions on fi and f change, typically one only needs to modify Mj accordingly. The
convergence rates of SAGA and several standard finite-sum methods (SDCA, Finito, etc)
can be obtained using the above quadratic constraints and LMI formulations. However, the
convergence rate proof of SAG is more subtle and requires the so-called Lure-Postnikov-type
Lyapunov function. We will talk about that in the next lecture.

4.6 Supply Rates for SVRG

Finally we briefly discuss SVRG that is built upon the idea of variance reduction. Originally
we model the SG method as Fu(G,∆) where ∆ maps v to w as wk = ∇fik(vk). We directly
developed the supply rate condition for ∆ and obtain some condition in the form of ES ≤ C

4-15



ECE 598 Lecture 4 — 09/03/2020 Fall 2020

where C is a positive constant. A physical interpretation is that the stochastic gradient
∇fik(vk) keeps on supplying energy into the system and hence the system is not going to
converge to its fixed point. Now we take a closer look. We can actually rewrite the SG
method as

xk+1 = xk − α(∇fik(xk)−∇fik(x∗))− α∇fik(x∗)

If we choose ξk = xk, vk = ξk, wk =

[
∇fik(vk)−∇fik(x∗)

∇fik(x∗)

]
, A = I, B =

[
−αI −αI

]
, and

C = I, we obtain a new feedback representation for the SG method. Now the input wk has
two entries. Actually it is trivial to construct a supply rate condition to couple the first entry
of wk with xk − x∗. For example, if fi is L-smooth and m-strongly convex, the following
inequality holds in an almost sure sense[

vk − x∗
∇fik(vk)−∇fik(x∗)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − x∗

∇fik(vk)−∇fik(x∗)

]
≤ 0. (4.34)

Hence the first entry of wk is not delivering energy into the system. The troublesome term
is the second entry of wk. The term ∇fik(x∗) keeps on delivering energy into the system.

SVRG modifies the second entry of wk as ∇fik(x∗)−∇fik(x0) +∇f(x0). Now this input
depends on the initial state x0. One will be able to obtain a supply rate condition in the form
of ES ≤ L‖x0 − x∗‖2. SVRG is an epoch-based algorithm and at the beginning of each epoch
it will update x0 as the last (or average) iterate of the last epoch. Notice for each epoch, one
needs to evaluate one full gradient ∇f(x0). Hence the selection of the epoch length is going
to affect the performance of SVRG. Within one epoch, x0 is a fixed vector. As more epochs
are run, x0 gets closer to x∗. The supplied energy eventually decreases to 0 as x0 converges
to x∗. This is a rough physical explanation for the convergence mechanism of SVRG. The
dissipation inequality approach can be applied to analyze SVRG and its accelerated variant
Katyusha. We omit the details here.

4-16


