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In this lecture, we briefly review Markov chains and Markov decision processes (MDPs).

6.1 Markov Chains

A discrete-time stochastic process is a collection of random variables {Xt}∞t=0. Suppose
Xt ∈ X for all t. Then the set X is called the state space.

Definition 1 (Markov Chain). A discrete-time stochastic process {xt}∞t=0 sampled from
a countable state space X is a Markov Chain if

P (xt+1 = j|xt = i, xt−1 = it−1, . . . , x0 = i0) = P (xt+1 = j|xt = i), ∀k.

For a Markov chain, once the value of the current state is known, the distribution of the
next state becomes independent of the past information.

A Markov Chain is time-homogeneous if the transition probabilities P (xt+1 = j|xt = i)
do not depend on t. Then we can denote such transition probability as Pij. The transition
matrix P is defined to be a matrix whose (i, j)-th entry is Pij. Obviously, we have Pij ≥ 0
for all (i, j). The matrix P is right stochastic since the entries in each row of P sum to one.

Let the distribution of xt be a row vector whose i-th entry is equal to pt(i) = P (xt = i).
Then we have pt = pt−1P = p0P

t.
Two useful facts are now reviewed below:

• A finite state irreducible Markov Chain has a unique stationary distribution π, which
satisfies π = πP .

• For an irreducible and aperiodic finite state Markov chain, pt always converges to π at
a geometric rate described by the spectral gap of P .

Markov chains in control. The above finite state space Markov chain model is useful for
many tasks in computer science. For control, we typically look at the case where X = Rn. In
this case, we have a continuous state variable xt. The Markov property means the conditional
probability density function for xt+1 is completely determined once xt is observed, i.e.

p(xt+1|xt, xt−1, . . . , x0) = p(xt+1|xt).
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In control engineering, we typically look at the state-space model:

xt+1 = f(xt, wt) (6.1)

where xt ∈ Rn is the state and wt is some random noise. If wt is IID, then {xt} forms a
Markov chain on Rn. Sometimes wt is also correlated and generated by a time series model
itself, i.e. wt = g(wt−1, et) where et is IID, then the augmented variable {(xt, wt)} forms a
Markov chain. If we have a model in the form of xt+1 = f(xt, xt−1, wt), then we need to

augment a new state yt =

[
xt
xt−1

]
and {yt} forms a Markov chain.

Linear systems as Markov chains. Let’s look at more concrete examples. The following
linear state-space model has been widely used in control applications:

xt+1 = Axt +Bwt

Here, wt is an IID Gaussian process and xt is the state. Then {xt} forms a Markov chain.
By induction, one can show xt is Gaussian for all t. For simplicity, we assume wt ∼ N (0,W ).
Suppose xt is known, then xt+1 becomes a Gaussian variable sampled from the distribution
N (Axt, BWBT). Clearly, the distribution of xt is completely determined once xt is observed.
Hence {xt} is a Markov chain. In addition, since a Gaussian variable is completely determined
by its mean and variance, the statistics of {xt} can be actually determined by the following
iteration:

µt+1 = Aµt

Qt+1 = AQtA
T +BWBT

where µt is the mean value of xt, and Qt is the covariance of xt.

Mixed continuous/discrete state space. Let’s look at another example here. Consider
the Markovian jump linear system xt+1 = Aitxt +Bitwt where it is the switching parameter
and wt is IID. This system is not a time-homogeneous Markov chain under arbitrary switch-
ing. However, if {it} is a Markov chain itself, we can augment {(xt, it)} to obtain a Markov
chain. In this case, the augmented state (xt, it) involves a mixture of continuous variable
(xt) and discrete variable (it).

6.2 Markov Decision Processes (MDPs)

A Markov decision process (MDP) can be viewed as a Markov process with feedback control.
Formally, a MDP is defined by a tuple 〈S,A, P, R, γ〉 where S is the state space, A is the
action space, P is the transition kernel, R is the reward, and γ is the discount factor. Let st
be the state at step t. At every step, we are allowed to choose an action at ∈ A to “control”

6-2



ECE 598 Lecture 6 — 09/22/2020 Fall 2020

the system. Once the action at is applied, the probability distribution for st+1 is completely
determined by the transition kernel P a

ss′ := P (st+1 = s′|st = s, at = a), and a reward R(st, at)
is received to measure the performance of the control action. The goal is to choose the action
sequence {at} to maximize the total accumulated rewards V (s0) = E

[∑∞
k=0 γ

kR(sk, ak)
∣∣s0].

How to solve MDPs? If the transition model P is known, then one can solve the MDP
using dynamic programming. When P is unknown, one can solve the MDP by applying
reinforcement learning methods. In general, reinforcement learning refers to a collection
of data-driven techniques that can be used to solve MDPs when the transition model is
unknown. We will talk about reinforcement learning in the next few lectures.

Applications in computer science and control. Many tasks such as game playing
and Go can be viewed as MDPs with discrete spaces. More guarantees can be obtained
for such setups. In contrast, control tasks are mostly formulated as MDPs with continuous
state/action variables. Let’s look at two examples here.

Example 1: Linear Quadratic Regulator (LQR) without process noise. We start
with a simple setup. Consider the following linear dynamical system

xt+1 = Axt +But (6.2)

where A is the state matrix, B is the input matrix, ut is the control action, and xt is the
system state. The objective is to choose {ut} to minimize the following cost

C = Ex0∼D

∞∑
t=0

(xTt Qxt + uTt Rut) (6.3)

where Q and R are positive definite matrices. There is an initial distribution D where x0
is sampled from. Since there is no process noise, the only randomness stems from D. The
choices of Q and R reflect the conflicting design objectives in control: We want to achieve
small tracking error by using small control inputs. Since there is no process noise wt, we can
set the discount factor γ to be 1 and the cost C is still finite. The above LQR problem can
still be viewed as a MDP on a continuous state space. A few key features are summarized
as follows.

1. Continuous state space: xt is a real vector and hence can take any values in Rx.

2. Continuous action space: ut is also a real vector.

3. Transition dynamics: Given xt and ut, then xt+1 is also known due to (6.2). The
transition dynamics can be viewed a stochastic kernel centering at (Axt + But) with
probability 1 .
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4. Additive structure of cost function: C is a sum of cost values at different t. The one-step
cost depends on both the state and the input at that step. The cost and the reward
are somehow equivalent concepts. Specifically, we can think our reward function as
R(x, u) = −(xTQx+ uTRu).

5. The discount factor γ is set to be 1.

Given an initial condition x0, we denote the state value function as V (x0) =
∑∞

t=0(x
T
t Qxt +

uTt Rut). Therefore, we have C = Ex∼DV (x).

Example 2: LQR with process noise. In this case, the dynamics become

xt+1 = Axt +But + wt (6.4)

where wt is an IID Gaussian noise. When there is the process noise term wt, the cost in
(6.3) is never finite for γ = 1 due to the fact that xt does not converge to 0. Hence we need
to set γ < 1. Now we consider the cost function

C = E
∞∑
t=0

γt(xTt Qxt + uTt Rut). (6.5)

Again, this is a MDP problem. A key fact is that the probability distribution of xt+1

is completely known if xt and ut are seen. This is due to the IID nature of wt. When
wt is Gaussian, the transition density will also be Gaussian. For simplicity, let’s assume
wt ∼ N (0,W ). Once (xt, ut) is given, then the distribution of xt+1 is completely determined
as N (Axt +But,W ). Therefore, the above LQR problem is exactly a MDP problem. Given
the information of (A,B,Q,R), we can apply model-based control methods such as Riccati
equation or LMIs to solve this MDP. If (A,B,Q,R) is unknown, we can apply reinforcement
learning to solve this problem. We will talk more about this in the next few lectures.
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