
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 7
Introduction to Reinforcement Learning

Lecturer: Bin Hu, Date:09/24/2020

In this lecture, we will give a big picture for reinforcement learning. Recall that a
MDP is defined by a tuple 〈S,A, P, R, γ〉 where S is the state space, A is the action
space, P is the transition kernel, R is the reward, and γ is the discount factor. The
goal is to choose the action sequence {at} to maximize the total accumulated rewards
V (s0) = E

[∑∞
k=0 γ

kR(sk, ak)
∣∣s0].

7.1 Policy/Controller

The action at is typically determined using a feedback function of st. This is a natural
consequence of dynamic programming and the concept of feedback is very important for
managing uncertainty. The feedback law mapping st to at is called “policy” (in the rein-
forcement learning literature) or “controller” (in some controls literature). A policy can be
deterministic (i.e. st = π(at) where π is a fixed nonlinear function) or stochastic (i.e. it
maps each state to a probability distribution over the action space A). Then the goal can be
equivalently formulated as finding an optimal policy that maximizes the total accumulated
rewards, i.e.

π∗ = arg max
π

E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0

]
.

Policy in the finite state/action space setting. If both S and A are finite, then
the policy parameterization is straightforward. Any deterministic policy can be actually
represented by a vector. For simplicity, consider S = {1, 2, . . . , n} and A = {1, 2, . . . , L}.
Then a deterministic policy π can be specified as as vector

π(1)
π(2)

...
π(n)


where π(i) ∈ A. Clearly the above vector is in Rn. If we further consider a stochastic policy,
then each π(i) is a probability distribution over A and hence is a vector in RL. Therefore,
we have π ∈ RnL for any stochastic policy.

7-1



ECE 598 Lecture 7 — 09/24/2020 Fall 2020

Policy parameterization in control applications. For control problems, we need to
“parameterize” the policy. In other words, the policy is a function mapping from states
to actions, and we need to specify this function by introducing some parameters. In the
simplest case, we can set ut = −Kxt where K is a static matrix. Then the action is just a
linear function of the state, and this is called linear state feedback control. It is also possible
to use nonlinear functions. For example, we can parameterize the controller as a two-layer
neural network, i.e. ut = W 2σ(W 1xt) where W 1 is the weight in the first layer, W 2 is the
weight in the second layer, and σ is some nonlinear activation function. We can also increase
the number of the layers and use deep neural networks to parameterize the policy. The deep
neural network parameterization is more popular in the machine learning community.

7.2 Policy Evaluation

To find the best policy, at least we need some tools to assess the performance of a given
policy. This task is called policy evaluation. The goal here is to calculate the value function
for any given policy.

V π(s0) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0

]
.

Now we give a high-level review of policy evaluation methods:

1. When the model is known, one can solve the Bellman equation to obtain the value
function of a given policy.

2. When the model is unknown, one can apply temporal difference learning methods (e.g.
TD, GTD, TDC, LSTD) to fit (or learn) a value function from data.

3. There are two types of value functions: state value function and Q-function. TD
learning can be applied to learn both. LSTD-Q is an off-policy method which is very
efficient in learning Q-function.

Qπ(s, a) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣s0 = s, a0 = a, ak ∼ π(·|sk)∀k ≥ 1

]
.

4. On-policy vs. off-policy: On-policy methods rely on data generated by the policy one
wants to evaluate. Off-policy methods use the data generated by the behavior policy
to learn the value function of the target policy. Hence off-policy methods are safer in
the sense that one can choose a safe behavior policy beforehand.

7-2



ECE 598 Lecture 7 — 09/24/2020 Fall 2020

7.3 Optimal Control Design

Now we talk a little bit about how to find the optimal policy. When the model is known,
one can solve the optimal Bellman equation to obtain the optimal policy. We are mostly
interested in the case where the model is unknown. Here is a high-level review of popular
reinforcement learning methods.

1. Value-based method: Q-learning which uses data to estimate the optimal Q-function.
Usually special tricks such as replay buffer and frozen targets are required to make it
work on control problems.

2. Approximate policy iteration: Estimate Q-function for a fixed policy and then use the
Q-function to plan greedily to obtain a new policy. Then iterate between the two steps.

3. Policy-gradient methods: Try to use data to estimate the gradient ∇πV and then
improve the policy using the gradient information. Examples include policy gradient,
natural policy gradient, trust region policy optimization (TRPO), proximal policy
optimization (PPO), and actor-critic.

4. Model-based methods: estimate the model first and then solve the optimal Bellman
equation or do model predictive control. Sometimes people will also look at regret
bounds.

For control applications, another important research topic is how to enforce other con-
straints (stability, safety, robustness) on the policy. Many people are working on this right
now. We will also talk about constrained policy optimization (CPO) and interior policy
optimization (IPO).

7.4 Policy Optimization beyond the MDP Setup

Finally, let’s have a brief discussion on the relationship between reinforcement learning and
control. Many control problems can be formulated as constrained optimization. Specifically,
consider a general nonlinear system

xt+1 = f(xt, ut, wt)

where xt is the state, ut is the control action, and wt is the process noise. Suppose the goal
is to design a controller ut = K(xt). Then many control design problems can be formulated
as

minimize
K∈K

J(K)

where K is the policy parameter, J is a control performance measure, and K is a feasible set
enforcing constraints on the policy. As discussed before, K is typically set a static matrix
or a neural network. Now we discuss more on J and K.

7-3



ECE 598 Lecture 7 — 09/24/2020 Fall 2020

The control performance measure J. We have to come up a quantity which can some-
how measures the performance of a given controller. In controls literature, the LQR cost or
some norms (e.g. H2 or H∞ norm) are typically used to measure the controller performance.
In machine learning, the cost is typically handcrafted in a case-by-case manner. Sometimes
one may need to use inverse reinforcement learning to learn a reward function from experts.
Sometimes one has to use domain-expertise to come up a reasonable reward function. How
to design J for complicated control tasks is more of an art than a science. When J has
an additive structure, i.e. J =

∑∞
t=0 γ

tR(xt, ut), the above control problem just becomes a
MDP and reinforcement learning methods can be directly applied. However, there also exist
some control measure which are not in additive forms. For example, the H∞ norm is an
important performance metric in robust control but it is not a sum of rewards at different
time steps. In principle, one can still calculate ∇J(K) and use the gradient information to
find the optimal K. However, how to estimate ∇J(K) from data becomes an issue since
most gradient estimation methods in reinforcement learning rely on the additive structure
of the cost function.

Constrained set K. The constraints will confine the policy search to a feasible set K.
Constraints on K are posed to account for either the stability, robustness, safety, or structural
concerns on the system. A common example is the stability constraint, i.e. we need the
system xt+1 = f(xt, K(xt), wt) to be a stable system. Sometimes the stability constraint is
hidden in the optimization process since J becomes ∞ when K is not stabilizing. In model
predictive control, safety constraints are typically posed to ensure xt or ut does not enter
certain bad sets. In robust control, robustness constraints are typically posed to ensure
stability subject to perturbation. In the reinforcement learning field, risk-related constraints
have been considered.

7-4


