
ECE 598: Interplay between Control and Machine Learning Fall 2020

Lecture 8
Policy Evaluation

Lecturer: Bin Hu, Date:09/29/2020

In this lecture, we discuss how to assess the performance of a given policy. Policy eval-
uation is an important task. The analysis tools will be tailored into design tools in later
lectures.

8.1 Discrete Space Case

Recall that a MDP is defined by a tuple 〈S,A, P, R, γ〉 where S is the state space, A is the
action space, P is the transition kernel, R is the reward, and γ is the discount factor. Given
a policy π, we want to analyze the associated value function:

V π(s) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0 = s

]
.

For simplicity, let’s first consider the value evaluation of a deterministic policy. If both
S and A are finite, then the policy π can be represented as a vector

π(1)
π(2)

...
π(n)


where π(i) ∈ A and n is the size of S. Then the value function becomes

V π(s) = E

[
∞∑
k=0

γkR(sk, π(sk))
∣∣s0 = s

]
.

Now we can apply the law of total probability to show:

V π(s) = ER(s0, π(s0)) + E

[
∞∑
k=1

γkR(sk, π(sk))
∣∣s0 = s

]

= ER(s, π(s)) +
∑
s′∈S

(
E[
∞∑
k=1

γkR(sk, π(sk))
∣∣s1 = s′]

)
P (s1 = s′

∣∣s0 = s)
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When π is fixed, the state {sk} becomes a Markov chain. We have P (s1 = s′
∣∣s0 = s) =

P (s1 = s′
∣∣s0 = s, a0 = π(s)) = P

π(s)
ss′ . Notice E

[∑∞
k=1 γ

kR(sk, π(sk))
∣∣s1 = s′

]
= γV π(s′). If

we denote R̄π(s) := ER(s, π(s)), then the equation on V π can be rewritten as

V π(s) = R̄π(s) + γ
∑
s′∈S

V π(s′)P
π(s)
ss′ (8.1)

which is the so-called Bellman equation. Recall S = {1, 2, . . . , n}. We can actually rewrite
the above Bellman equation in the following matrix form:V

π(1)
...

V π(n)

 =

R̄
π(1)
...

R̄π(n)

+ γ

P
π(1)
11 · · · P

π(1)
1n

...
. . .

...

P
π(n)
n1 · · · P

π(n)
nn


V

π(1)
...

V π(n)


If we use the following vector notation:

V π =


V π(1)
V π(2)

...
V π(n)

 , R̄π =


R̄π(1)
R̄π(2)

...
R̄π(n)

 , P π =

P
π(1)
11 · · · P

π(1)
1n

...
. . .

...

P
π(n)
n1 · · · P

π(n)
nn


we can rewrite the Bellman equation as

V π = R̄π + γP πV π. (8.2)

Therefore, the policy evaluation becomes an equation solving problem. Notice P π is
actually the transition matrix for the Markov chain {sk}. Clearly, this matrix is right
stochastic and the spectral radius is 1. Therefore, I − γP π is nonsingular for any 0 < γ < 1,
and the Bellman equation admits a unique solution

V π = (I − γP π)−1R̄π

If we want to avoid matrix inversion, we can use an iterative scheme:

V π
k+1 = R̄π + γP πV π

k

which is equivalent to a linear time-invariant system:

V π
k+1 − V π = γP π(V π

k − V π)

Since the spectral radius of γP π is γ, we immediately know the above system converges to V π

at a linear rate γ. The above scheme requires knowing P π. When the model is unknown, we
can somehow modify the above scheme and obtain the temporal difference learning method
which is model free. We will talk about temporal difference learning next week.

When a stochastic policy is used, the Bellman equation still holds. We only need
to slightly modify the definitions of R̄π and P π. For example, now we have R̄π(s) =

E
[
R(s, a)

∣∣a ∼ π(|̇s)
]
. I will let you figure out how to modify P π. In general, when a

fixed stochastic policy is used, the state {sk} still becomes a Markov chain and P π is the
associated transition matrix. Then V π can still be solved via the Bellman equation.
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8.2 Continuous Space Case

For simplicity, let’s consider the LQR setup:

xt+1 = Axt +But (8.3)

We focus on the policy evaluation for a linear policy ut = −Kxt. Substituting ut = −Kxt
into (8.3) leads to xt+1 = (A−BK)xt. Hence we have

xt = (A−BK)tx0 (8.4)

We denote the spectral radius as ρ. If K stabilizes the system (8.3), then ρ(A − BK) < 1
and xt → 0 at a geometric rate. The quadratic cost becomes

C(K) = Ex0∼D xT0

(
∞∑
t=0

((A−BK)T)t(Q+KTRK)(A−BK)t

)
x0 (8.5)

When ρ(A − BK) ≥ 1, the above cost blows up to infinity. It makes sense to restrict the
policy search within the class of stabilizing K. When ρ(A−BK) < 1, we know

∑∞
t=0((A−

BK)T)t(Q + KTRK)(A − BK)t will converge to a fixed constant matrix. We denote this
matrix by PK . Therefore, it is reasonable to parameterize the value function as x>0 PKx0
which is a quadratic function of x0. When a nonlinear policy is used, we typically need to
parameterize the value function as a neural network.

Bellman equation for policy evaluation. From the above discussion, we have already
known PK =

∑∞
t=0((A − BK)T)t(Q + KTRK)(A − BK)t. The bellman equation can be

derived as follows.

xT0PKx0 =
∞∑
t=0

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 +
∞∑
t=1

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 + xT1PKx1

= xT0 (Q+KTRK)x0 + xT0 (A−BK)TPK(A−BK)x0

= xT0
(
Q+KTRK + (A−BK)TPK(A−BK)

)
x0

Therefore, the Bellman equation takes the following form:

PK = Q+KTRK + (A−BK)TPK(A−BK) (8.6)

For any fixed K, the above equation is a linear equation of PK . Hence the existence and
uniqueness of the solution to the above Bellman equation can be established using linear
equation theory.
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To obtain a closed-form solution for PK , we need to introduce the Kronecker product
and the vectorization operation. The Kronecker product of two matrices A ∈ Rm×n and
B ∈ Rp×q is denoted by A⊗B and given by:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
where aij is the (i, j)-th entry of A. Clearly, we have A⊗ B ∈ Rpm×qn. Notice (A⊗ B)T =
AT⊗BT and (A⊗B)(C⊗D) = (AC)⊗(BD) when the matrices have compatible dimensions.

Next, let vec denote the standard vectorization operation that stacks the columns of a
matrix into a vector. For example, we have

vec

1 2
3 4
5 6

 =


1
3
5
2
4
6

 .

An important fact is that we always have vec(AXB) = (BT ⊗A) vec(X). Therefore, we
have

vec
(
(A−BK)TPK(A−BK)

)
=
(
(A−BK)T ⊗ (A−BK)T

)
vec(PK)

Then we can vectorize both sides of the Bellman equation (8.6) to obtain

vec(PK) = vec(Q+K>RK) +
(
(A−BK)T ⊗ (A−BK)T

)
vec(PK)

which can be easily solved for PK :

vec(PK) =
(
I − (A−BK)T ⊗ (A−BK)T

)−1
vec(Q+KTRK)

Now we have a closed-form solution for PK . Using properties of the Kronecker product, one
can show

(
I − (A−BK)T ⊗ (A−BK)T

)
is nonsingular under the assumption ρ(A−BK) <

1. We skip the details here. The key message here is that for any stabilizing K, we can solve
(8.6) to obtain PK and then the value function for K is V (x) = xTPKx.

For general nonlinear policy, the existence and uniqueness conditions for Bellman equa-
tion are much more complicated. Consider a nonlinear system xt+1 = f(xt, ut) with some
nonlinear policy ut = K(xt). Then the Bellman equation takes the form of V (x) =
C(x,K(x)) + V (f(x,K(x))).

Finally, we consider LQR with process noise: xt+1 = Axt +But + wt where wt is an IID
process noise. Given a linear policy K, it is straightforward to use induction to show

V (x) = rK + xT

(
∞∑
t=0

γt((A−BK)T)t(Q+KTRK)(A−BK)t

)
x (8.7)
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where rK is some extra term introduced by the noise wt. Therefore, we can parameterize
the value function as xTPKx+ rK . Therefore, we have

V (x) = xT(Q+KTRK)x+ γ
(
E((A−BK)x+ w)TPK((A−BK)x+ w) + rK

)
(8.8)

Notice w is independent from x and has a zero mean, we have

E((A−BK)x+ w)TPK((A−BK)x+ w) = xT(A−BK)TPK(A−BK)x+ E(wTPKw)

Notice that the left side of (8.8) is just xTPKx+ rK . Hence (8.8) can be rewritten as

xTPKx+ rK = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x+ γE(wTPKw) + γrK

To ensure that the quadratic functions on the left and right sides of the above equation are
the same, the following have to be true:

xTPKx = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x

rK = γE(wTPKw) + γrK

Hence, the Bellman equation becomes

PK = Q+KTRK + γ(A−BK)TPK(A−BK)

and rK = γ
1−γE(wTPKw) = γ

1−γ trace(PW ) where W is the covariance matrix of wt.
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