ECE 598: Interplay between Control and Machine Learning Fall 2020
Lecture 9

Optimal Bellman Equation and Value Iteration

Lecturer: Bin Hu, Date:10/01/2020

In this lecture, we discuss how to design the optimal policy. The key concept is the
optimal Bellman equation.

9.1 Discrete Space Case

Recall that a MDP is defined by a tuple (S, A, P, R,y) where S is the state space, A is the
action space, P is the transition kernel, R is the reward, and = is the discount factor. Then
the goal is to find an optimal policy that maximizes the total accumulated rewards, i.e.

ZVkR(Smak)}ak ~ 7(-|sk), 50] .

k=0

7" = argmax |E
s

Suppose the value of 7* is V*. Then the optimal Bellman equation states that the optimal
value function satisfies

V*(s) = max R(s,a +72P“ V(s (9.1)

We can compare the above equation with the Bellman equation for a fixed deterministic
policy

V7(s) = R(s,7(s)) +7 Y PRIV™(s) (9.2)

Obviously the optimal Bellman equation is nonlinear since it involves a minimization over
a € A. For each s € S, one has to choose a such that the term [R(s,a) +~ >, P%V*(s)]
is minimized. Clearly such an optimal action exists since there is only a finite number of
possible actions. As a matter of fact, such an optimal action is a function of s and this
one-to-one mapping directly gives the optimal policy. Such a policy is deterministic and we
have

*(s) = arg max R(s,a) + ”yz P2 V(s (9.3)

Now we discuss how to solve the optimal Bellman equation. A fundamental algorithm
is the so-called value iteration (VI) method. VI is an iterative algorithm which solves V*
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by recursively applying the Bellman operator 7" which maps any V' € R" to another vector
whose i-th element is equal to max,e4 [R(s, a)+y>  PLV*(s )} The VI algorithm can
be compactly written as Vjy1 = T'(Vj). This is equivalent to

Vk+1(s):I§1€ez< (s,a +72P V(s

One can show that the Bellman operator is a contraction mapping [|T'(V) — T (V') |lee <
Y|V = V||« for any (V, V’). Therefore, by the famous Banach fixed point theorem, we know
Vi converges to V* at a linear rate 7.

9.2 Continuous Space Case

9.2.1 LQR without Process Noise
For simplicity, again let’s first consider the LQR setup:

Tiy1 = A]}'t + But (94)

The goal is to design a controller to minimize the quadratic cost.
For the above LQR problem, the optimal Bellman equation becomes the following Riccati
equation

P=ATPA+Q—-A"PB(B"PB+ R)"'B"PA (9.5)

When (A, B) is stabilizable, the above equation has a unique positive definite! stabilizing
solution P such that p(A — B(BTPB + R)"'BTPA) < 1. Then the optimal action is given
by a linear policy, i.e. u; = —(BTPB + R)"'BTPAx,. This linear policy is optimal among
all (potentially nonlinear) policies. This can be shown using completion of square. We can
rewrite the cost as follows.

o0

> (@] Qe+ ul Ruy)

t=0

=14 Pro + Z(xtTQ:L*t +uy Ruy + xf Pryyy — x) Pay)
=0

:Q:OTPJCO + Z T Qxy +u] Ruy + (Ax, + Buy)" P(Azy + Buy) — xtTth)

=10 Pzo+ Y (¢/(Q+ ATPA— P)z; + u] (R + B'PB)u; + ] ATPBu, + u] B' P Au,)
t=0

IFor simplicity, we assume Q is positive definite in this note. Hence the solution P is positive definite. In
general, it is possible to allow @ to be only positive semidefinite and the solution P can also become positive
semidefinite. Some extra observability assumption is then needed.
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By the Riccati equation, we have Q + ATPA— P = ATPB(B"PB + R)"!BTPA. Hence we
have

o0

Z( ¢ Qg + uf Ruy)

t=0

—x] Py + Z {ATPB(B"PB + R)'B"PAz; +u/(R+ B'"PB)u; + 2] ATPBu, + u; B PAx,)

O Z ((B"PB+ R)u; + B"PAz,)" (B"PB+ R)™" ((B"PB + R)u, + BT PAx,)

t=0

Notice BT PB + R is positive definite. Therefore, the cost achieves its minimal value x) Pz
if the action is chosen to satisfy (B'PB + R)u; + BTPAx; = 0. We have skipped a few
technical details but the above calculation roughly explain why the optimal policy is given

by K = (BTPB + R)"'BTPA.

How does the Riccati equation arise? Usually one first looks at LQR on a finite
horizon and then extends the result there to the infinite horizon setup. Instead of doing
that, we will provide an alternative informal derivation that starts from the assumption that
the optimal policy is linear. Under this assumption, the optimal value function is quadratic
and takes the form of T Px. The optimal Bellman equation states the following fact.

2" Pr = min(z'Qz + u" Ru + (Ax + Bu)" P(Az + Bu)) (9.6)

Clearly, the right side is a quadratic function in u. Taking the gradient of the right hand
side with respect to u leads to the following equation:

(R+ B"PB)u+ B"PAz =0

The optimal u is given as u = —(R + BTPB) BT PAx. We can substitute this relation to
the right side of (9.6) and obtain

P=Q+A"PB(R+B"PB)'R(R+ B"PB)™'B"PA
+ (A= B(B"PB+ R)"'B"PA)' P(A— B(B"PB+ R)"'BTPA)

Simplifying the above equation leads to the Riccati equation (9.5).

Key message. When writing out the optimal Bellman equation, we need to know how to
parameterize the optimal value function. In the LQR problem, we know we can parameter-
ize the optimal value function as a quadratic function. Therefore, eventually the optimal
Bellman equation (9.6) is equivalent to an algebraic Riccati equation on P. If we just use a
general value function V'(z), then (9.6) becomes

V(z) = min(z"Qz + u" Ru + V(Ax + Bu)) (9.7)
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How to figure out V becomes a difficult task. For nonlinear control, the situation is even
worse. Suppose the dynamics become x;,1 = f(zy,u;) and the one-stage cost is c(z,u)
where ¢ is some complicated function. Then the optimal Bellman equation is in the following
nonlinear form:

V(z) = muin(c(a:, u) + V(f(z,u))) (9.8)

which is extremely difficult to solve. One has to approximate V' using neural networks.

Value Iteration. Suppose we decide to parameterize the value function as V(z) = 2" Pz.
The Bellman operator 7" maps P to P’ as follows

o' P’z = min(z' Qx + u' Ru + (Az + Bu)"P(Az + Bu)) (9.9)

Clearly, the optimal Bellman equation (9.6) is equivalent to P = T(P) and just gives the
fixed point for the above Bellman operator. Again, the right side of (9.9) is a quadratic
function of u, and minimizing over u gives

P =ATPA+Q—-A"PB(B"PB+ R)"'B"PA (9.10)

Therefore, we can apply the Bellman operator recursively and obtain a value iteration algo-
rithm:

Pt =ATP"A+Q - ATP"B(B"P"B+ R)"'B"P"A (9.11)

We can clearly see, for the continuous state space case, we need to parameterize the value
function and then iteratively update these parameters.

9.2.2 LQR with Process Noise
In this case, the dynamics become

Typ1 = Azy + Buy + wy (9.12)
where w; is an IID Gaussian noise.

1. Optimal Bellman equation: Suppose the optimal state value function is 2T Px +r. We
have

2" Pz + 7 =min(z"Qr + u' Ru + yE(Azx + Bu +w)" P(Ax + Bu +w) +77)
= min(z' Qz + u" Ru + vy(Az + Bu)" P(Az + Bu) + yEw' Pw + yr)

u

Taking gradient of the function on the right side with respect to u leads to

u=—y(R+~vB"PB) 'B"PAx.
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which can be substituted b back to get the following optimal Bellman equation:
P=Q+~yA"PA—-~+?A"PB(R+~B"PB)'B"PA

Then the optimal state-action value function can be calculated as

N
. _[z] [ +~+vATPA  yATPB x
Q" (x,u) = {u] [ VBTPA  R+~BTPB| |u 1_7trace(PW)
2. Value iteration: Algorithm (9.11) should be modified as
P =~ATP"A+Q —y*ATP"B(yB"P"B + R) 'B"P"A (9.13)
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