ECE598ICM: Interplay between Control and Machine Learning Fall 2020
Solutions for Homework 1

1.
(a) A sample code is provided. If we enforce P > 1073] and ATPA — P < —10731, we
get

79754 1.6911 —1.4204
P=16911 11.2306 3.2385
—1.4204 3.2385 14.2761

If we enforce the trace of P to be 1, we get

0.2606 0.0654 —0.0917
P = 0.0654 0.3146 0.0661
—0.0917 0.0661 0.4249

You can double check that the above values of P are indeed two feasible solutions for the
LMI in the problem statement.

(b) The spectral radius of A is 0.97293. Now if we test the LMI with p = 0.97293 and
break the homogeneity by setting ¢ = 0.001, we can get

173.3426  74.6824 —147.0031
P = 746824 60.9757  —53.3249
—147.0031 —53.3249 161.1627

You can double check that the above P is indeed a feasible solution for the original LMI. If
we test the LMI with p = 0.97292, the LMI becomes infeasible. Hence the smallest value of
p for the LMI is the same as the spectral radius of A.

(c) A sample code is provided. Since the LMI condition is linear in both p* and A, we
can choose a new variable ry = p? and just minimizes the LMI over r,. We can find the
value of ry is always extremely closed to max{|1 —ma|, ||l — La||}. When L/m is large, the
problem becomes ill-conditioned and the value of p is extremely close to 1.

2

(a) For any matrix M, we have M < 0 if and only if M ® I < 0. Therefore, the LMI
condition (1) in the problem statement is feasible if and only if the following condition is

feasible
(I=p)I —al] —2I°T 0] 2ml -1
[ —al ol M 0 I A2 -1 0 <0
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* T _ *
We can left and right multiply the above condition with {xk; v } and [% w v } . This
k k
leads to

c
T — T* (1=p)I —al| —2L7T 0] | [2mI —I|\ [2p—2*
[ Wi } ([ —al ol M 0 I A2 -1 0 Wi <0

Substituting the fact [[zsy — 22— %z — a2 = [P = %] [ =) —al] [ox —a®
ubstituting the fact ||rg1 — po\lrk — 2*||° = o —al o2l W,
into the above inequality, we get

ki1 — 2|1 = pPllay, — 2*))* <
W 1" 2121 0] [z, — 2* L | 1 [oml =17 [z — o*
Yy 0 I Wy, 21wy, —-I 0 Wy

Now we can take expectation of the above inequality and apply the two supply rate conditions
given in the problem statement to show

Elzp1 — 2> < p*Ellag — 2*)* + MM
< p'Ellze—y — 2** + (14 p )M M

< pMEllzo — || + (Z p2t> MM

=0
MM
1—p?

= p*"El|wo — 2" +
This completes the proof.

(b) We can choose A\; = a? and Ay = a to make the LMI condition (1) feasible. In
this case, the left side of the LMI condition (1) becomes a zero matrix. Then the desired
conclusion directly follows.

(c¢) A matrix M is positive semidefinite if and only if M ® I, > 0. Therefore, we can get
rid of the Kronecker product with I, in our LMI implementation. For SAGA, we can set the
matrices as

AZ:|: €elT X1:|,B7;:|:661T:|70:[01><n 1}

—%(e — ne;)

In addition, we choose X as

on{ c omoﬁl ofxTnH_(sz —(m+L)} {1 OMH c omo]

O20x21  Lnxn 0 —e m + L) 2 0 %GT O20x21  Lnxn
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For j =1,...,n, we choose X as
T T
X — C 0120 I Oixn 2mL —(m+L)| |1 O1xn C 0120
! O20x21  Lnxen 0 6;!— —(m+ L) 2 0 6}— O20x21  Lnxen
Next, we implement the following LMI with o = 3 and pPP=1- mm{3 y3f

1~ [ATPA; — p*P ATPB;
I R B v

We try both (m,L) = (1,10,20) and (m, L,n) = (1,100,20). The above LMI is always
feasible. Then enforce P to be a diagonal matrix. Set \g =0 and \; = A forall 1 < j <n.
The LMI is still feasible.

2
Actually, one can enforce P = {36]%” O"XI and A = £-. The LMI is still feasible.
1xn E

Based on these parameters, one can even get an analytical proof for the convergence rate of
SAGA. A sample code is also provided for demonstrations.

3

(a) Substituting vy = (1 + B)ay — frk—1 and x5 = (1 + B)ay — Brg—1 — aV f(vg), we
have

L

V() (@ = v) + e = ol + V)T 0 = @) = 5 ok = i
2
—BY f(vy) (@1 — @) + mﬁ |2k — @l + | V£ (0n)]]* - L&nwwk)n?
x, — ¥ T BQm —5*m -0 xr — ¥
= |Tp1 — 2" 3 —3*m  Pm B Q1| |wpoy —
V f(vr) -3 p o a2-La) V f(vr)

Therefore, we have

L[ #m —pPm
X, =~ |-B*m AB*m 15} ® 1.
2l -8 8 a2-La)
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(b) Substituting vy, = (1 + B)zg — frr—1 and xpy = (1 + B)ag — Brg—1 — aV f(vg), we
have

m L
Vf(ve) (z* — o) + 5||95* — 0| |? + V(o) (v — Tpg1) — §||Uk — T |

== V() (1 + B)(wr — 2%) = Blwp-r — a")) + %Il(l +B8) (@ — %) = Blap-1 — 27|

L 2
+af| V£ () = -V F ()P
T

T — xF (1+8)>*m —p1+8)m —(1+0) T, — o
= |Tp_1 — 2" = | =B+ B8)m B*m 5 QI [T —a*
V f(vk) —(1+8) 8 a(2 — La) V f(vk)

Therefore, we have

(L+p8)*m  —B(L+B)m —(1+p)
X2:§ —B(1 + B)m B*m B ® 1.
—(145) 15} a2 — La)

(c) A sample code is provided. Notice M < 0 if and only if M ® I < 0. Hence we can get
rid of the Kronecker product in the LMI implementation. The resultant LMI is 3 x 3. From
the numerical solution, we can see that P looks like a matrix with rank 1. For example, if
we choose m =1 and L = 100 in the code, the value of P is

50 —45
F= [—45 40.5]

The rank of this matrix is 1. The left side of the LMI also has a pattern. For m = 1 and
L =100, we have

-1 1 0
ATPA - p?P A'PB
0 0 0
Actually after trying different values of (m, L), we can always find the following pattern:
-1 1 0
ATPA - p?P A'PB
{ BTPA B'PB| X 7F¢ (1) _01 8 =0

where ¢ is some positive constant. If we can figure P and ¢, then we are done with the
convergence rate proof.

(d) Now it is straightforward to verify that the following holds

|:ATPA—,02P ATPB:|_X:\/E(\/E—\/E)3 —11 1 0

-1 0| ®I<0
BTPA B'PB 2(L +vLm) 0 0 0

This above fact can be verified using Matlab symbolic toolbox.
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