1.

(a) A sample code is provided. If we enforce $P \geq 10^{-3} I$ and $A^{\top} P A-P \leq-10^{-3} I$, we get

$$
P=\left[\begin{array}{ccc}
7.9754 & 1.6911 & -1.4204 \\
1.6911 & 11.2306 & 3.2385 \\
-1.4204 & 3.2385 & 14.2761
\end{array}\right]
$$

If we enforce the trace of P to be 1 , we get

$$
P=\left[\begin{array}{ccc}
0.2606 & 0.0654 & -0.0917 \\
0.0654 & 0.3146 & 0.0661 \\
-0.0917 & 0.0661 & 0.4249
\end{array}\right]
$$

You can double check that the above values of P are indeed two feasible solutions for the LMI in the problem statement.
(b) The spectral radius of A is 0.97293 . Now if we test the LMI with $\rho=0.97293$ and break the homogeneity by setting $\varepsilon=0.001$, we can get

$$
P=\left[\begin{array}{ccc}
173.3426 & 74.6824 & -147.0031 \\
74.6824 & 60.9757 & -53.3249 \\
-147.0031 & -53.3249 & 161.1627
\end{array}\right]
$$

You can double check that the above P is indeed a feasible solution for the original LMI. If we test the LMI with $\rho=0.97292$, the LMI becomes infeasible. Hence the smallest value of ρ for the LMI is the same as the spectral radius of A.
(c) A sample code is provided. Since the LMI condition is linear in both ρ^{2} and λ, we can choose a new variable $r_{2}=\rho^{2}$ and just minimizes the LMI over r_{2}. We can find the value of r_{2} is always extremely closed to $\max \{\mid 1-m \alpha\|\| 1-,L \alpha \|\}$. When L / m is large, the problem becomes ill-conditioned and the value of ρ is extremely close to 1 .

2

(a) For any matrix M, we have $M \leq 0$ if and only if $M \otimes I \leq 0$. Therefore, the LMI condition (1) in the problem statement is feasible if and only if the following condition is feasible

$$
\left[\begin{array}{cc}
\left(1-\rho^{2}\right) I & -\alpha I \\
-\alpha I & \alpha^{2} I
\end{array}\right]-\lambda_{1}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]-\lambda_{2}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right] \leq 0
$$

We can left and right multiply the above condition with $\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]^{\top}$ and $\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]$. This leads to

$$
\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left(\left[\begin{array}{cc}
\left(1-\rho^{2}\right) I & -\alpha I \\
-\alpha I & \alpha^{2} I
\end{array}\right]-\lambda_{1}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]-\lambda_{2}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right]\right)\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right] \leq 0
$$

Substituting the fact $\left\|x_{k+1}-x^{*}\right\|^{2}-\rho^{2}\left\|x_{k}-x^{*}\right\|^{2}=\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]^{\top}\left[\begin{array}{cc}\left(1-\rho^{2}\right) I & -\alpha I \\ -\alpha I & \alpha^{2} I\end{array}\right]\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]$ into the above inequality, we get

$$
\begin{aligned}
& \left\|x_{k+1}-x^{*}\right\|^{2}-\rho^{2}\left\|x_{k}-x^{*}\right\|^{2} \leq \\
& \lambda_{1}\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right]\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]
\end{aligned}
$$

Now we can take expectation of the above inequality and apply the two supply rate conditions given in the problem statement to show

$$
\begin{aligned}
\mathbb{E}\left\|x_{k+1}-x^{*}\right\|^{2} & \leq \rho^{2} \mathbb{E}\left\|x_{k}-x^{*}\right\|^{2}+\lambda_{1} M \\
& \leq \rho^{4} \mathbb{E}\left\|x_{k-1}-x^{*}\right\|^{2}+\left(1+\rho^{2}\right) \lambda_{1} M \\
& \leq \rho^{2 k} \mathbb{E}\left\|x_{0}-x^{*}\right\|+\left(\sum_{t=0}^{\infty} \rho^{2 t}\right) \lambda_{1} M \\
& =\rho^{2 k} \mathbb{E}\left\|x_{0}-x^{*}\right\|+\frac{\lambda_{1} M}{1-\rho^{2}}
\end{aligned}
$$

This completes the proof.
(b) We can choose $\lambda_{1}=\alpha^{2}$ and $\lambda_{2}=\alpha$ to make the LMI condition (1) feasible. In this case, the left side of the LMI condition (1) becomes a zero matrix. Then the desired conclusion directly follows.
(c) A matrix M is positive semidefinite if and only if $M \otimes I_{p} \geq 0$. Therefore, we can get rid of the Kronecker product with I_{p} in our LMI implementation. For SAGA, we can set the matrices as

$$
A_{i}=\left[\begin{array}{cc}
I_{n}-e_{i} e_{i}^{\top} & 0_{n \times 1} \\
-\frac{\alpha}{n}\left(e-n e_{i}\right)^{\top} & 1
\end{array}\right], \quad B_{i}=\left[\begin{array}{c}
e_{i} e_{i}^{\top} \\
-\alpha e_{i}^{\top}
\end{array}\right], C=\left[\begin{array}{ll}
0_{1 \times n} & 1
\end{array}\right]
$$

In addition, we choose X_{0} as

$$
X_{0}=\left[\begin{array}{cc}
C & 0_{1 \times 20} \\
0_{20 \times 21} & I_{n \times n}
\end{array}\right]^{\top}\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & \frac{1}{n} e^{\top}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 m L & -(m+L) \\
-(m+L) & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & \frac{1}{n} e^{\top}
\end{array}\right]\left[\begin{array}{cc}
C & 0_{1 \times 20} \\
0_{20 \times 21} & I_{n \times n}
\end{array}\right]
$$

For $j=1, \ldots, n$, we choose X_{j} as

$$
X_{j}=\left[\begin{array}{cc}
C & 0_{1 \times 20} \\
0_{20 \times 21} & I_{n \times n}
\end{array}\right]^{\top}\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & e_{j}^{\top}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 m L & -(m+L) \\
-(m+L) & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & e_{j}^{\top}
\end{array}\right]\left[\begin{array}{cc}
C & 0_{1 \times 20} \\
0_{20 \times 21} & I_{n \times n}
\end{array}\right]
$$

Next, we implement the following LMI with $\alpha=\frac{1}{3 L}$ and $\rho^{2}=1-\min \left\{\frac{1}{3 n}, \frac{m}{3 L}\right\}$:

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{cc}
A_{i}^{\top} P A_{i}-\rho^{2} P & A_{i}^{\top} P B_{i} \\
B_{i}^{\top} P A_{i} & B_{i}^{\top} P B_{i}
\end{array}\right] \leq \sum_{j=0}^{n} X_{j}
$$

We try both $(m, L)=(1,10,20)$ and $(m, L, n)=(1,100,20)$. The above LMI is always feasible. Then enforce P to be a diagonal matrix. Set $\lambda_{0}=0$ and $\lambda_{j}=\lambda$ for all $1 \leq j \leq n$. The LMI is still feasible.

Actually, one can enforce $P=\left[\begin{array}{cc}\frac{2}{3 L} I_{n \times n} & 0_{n \times 1} \\ 0_{1 \times n} & \frac{1}{\alpha}\end{array}\right]$ and $\lambda=\frac{1}{L n}$. The LMI is still feasible. Based on these parameters, one can even get an analytical proof for the convergence rate of SAGA. A sample code is also provided for demonstrations.
(a) Substituting $v_{k}=(1+\beta) x_{k}-\beta x_{k-1}$ and $x_{k+1}=(1+\beta) x_{k}-\beta x_{k-1}-\alpha \nabla f\left(v_{k}\right)$, we have

$$
\begin{aligned}
& \nabla f\left(v_{k}\right)^{\top}\left(x_{k}-v_{k}\right)+\frac{m}{2}\left\|x_{k}-v_{k}\right\|^{2}+\nabla f\left(v_{k}\right)^{\top}\left(v_{k}-x_{k+1}\right)-\frac{L}{2}\left\|v_{k}-x_{k+1}\right\|^{2} \\
= & \beta \nabla f\left(v_{k}\right)^{\top}\left(x_{k-1}-x_{k}\right)+\frac{m \beta^{2}}{2}\left\|x_{k-1}-x_{k}\right\|^{2}+\alpha\left\|\nabla f\left(v_{k}\right)\right\|^{2}-\frac{L \alpha^{2}}{2}\left\|\nabla f\left(v_{k}\right)\right\|^{2} \\
= & {\left.\left[\begin{array}{c}
x_{k}-x^{*} \\
x_{k-1}-x^{*} \\
\nabla f\left(v_{k}\right)
\end{array}\right]^{\top}\left(\begin{array}{ccc}
\frac{1}{2} m & -\beta^{2} m & -\beta \\
-\beta^{2} m & \beta^{2} m & \beta \\
-\beta & \beta & \alpha(2-L \alpha)
\end{array}\right] \otimes I\right)\left[\begin{array}{c}
x_{k}-x^{*} \\
x_{k-1}-x^{*} \\
\nabla f\left(v_{k}\right)
\end{array}\right] }
\end{aligned}
$$

Therefore, we have

$$
X_{1}=\frac{1}{2}\left[\begin{array}{ccc}
\beta^{2} m & -\beta^{2} m & -\beta \\
-\beta^{2} m & \beta^{2} m & \beta \\
-\beta & \beta & \alpha(2-L \alpha)
\end{array}\right] \otimes I
$$

(b) Substituting $v_{k}=(1+\beta) x_{k}-\beta x_{k-1}$ and $x_{k+1}=(1+\beta) x_{k}-\beta x_{k-1}-\alpha \nabla f\left(v_{k}\right)$, we have

$$
\begin{aligned}
& \nabla f\left(v_{k}\right)^{\top}\left(x^{*}-v_{k}\right)+\frac{m}{2}\left\|x^{*}-v_{k}\right\|^{2}+\nabla f\left(v_{k}\right)^{\top}\left(v_{k}-x_{k+1}\right)-\frac{L}{2}\left\|v_{k}-x_{k+1}\right\|^{2} \\
= & -\nabla f\left(v_{k}\right)^{\top}\left((1+\beta)\left(x_{k}-x^{*}\right)-\beta\left(x_{k-1}-x^{*}\right)\right)+\frac{m}{2}\left\|(1+\beta)\left(x_{k}-x^{*}\right)-\beta\left(x_{k-1}-x^{*}\right)\right\|^{2} \\
& +\alpha\left\|\nabla f\left(v_{k}\right)\right\|^{2}-\frac{L \alpha^{2}}{2}\left\|\nabla f\left(v_{k}\right)\right\|^{2} \\
= & {\left.\left[\begin{array}{c}
x_{k}-x^{*} \\
x_{k-1}-x^{*} \\
\nabla f\left(v_{k}\right)
\end{array}\right]^{\top}\left(\begin{array}{ccc}
1 \\
\frac{1}{2}[\beta)^{2} m & -\beta(1+\beta) m & -(1+\beta) \\
-\beta(1+\beta) m & \beta^{2} m & \beta \\
-(1+\beta) & \beta & \alpha(2-L \alpha)
\end{array}\right] \otimes I\right)\left[\begin{array}{c}
x_{k}-x^{*} \\
x_{k-1}-x^{*} \\
\nabla f\left(v_{k}\right)
\end{array}\right] }
\end{aligned}
$$

Therefore, we have

$$
X_{2}=\frac{1}{2}\left[\begin{array}{ccc}
(1+\beta)^{2} m & -\beta(1+\beta) m & -(1+\beta) \\
-\beta(1+\beta) m & \beta^{2} m & \beta \\
-(1+\beta) & \beta & \alpha(2-L \alpha)
\end{array}\right] \otimes I
$$

(c) A sample code is provided. Notice $M \leq 0$ if and only if $M \otimes I \leq 0$. Hence we can get rid of the Kronecker product in the LMI implementation. The resultant LMI is 3×3. From the numerical solution, we can see that P looks like a matrix with rank 1. For example, if we choose $m=1$ and $L=100$ in the code, the value of P is

$$
P=\left[\begin{array}{cc}
50 & -45 \\
-45 & 40.5
\end{array}\right]
$$

The rank of this matrix is 1 . The left side of the LMI also has a pattern. For $m=1$ and $L=100$, we have

$$
\left[\begin{array}{cc}
A^{\top} P A-\rho^{2} P & A^{\top} P B \\
B^{\top} P A & B^{\top} P B
\end{array}\right]-X=3.3136\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Actually after trying different values of (m, L), we can always find the following pattern:

$$
\left[\begin{array}{cc}
A^{\top} P A-\rho^{2} P & A^{\top} P B \\
B^{\top} P A & B^{\top} P B
\end{array}\right]-X=c\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \leq 0
$$

where c is some positive constant. If we can figure P and c, then we are done with the convergence rate proof.
(d) Now it is straightforward to verify that the following holds

$$
\left[\begin{array}{cc}
A^{\top} P A-\rho^{2} P & A^{\top} P B \\
B^{\top} P A & B^{\top} P B
\end{array}\right]-X=\frac{\sqrt{m}(\sqrt{L}-\sqrt{m})^{3}}{2(L+\sqrt{L m})}\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \otimes I \leq 0
$$

This above fact can be verified using Matlab symbolic toolbox.

