ECE598ICM: Interplay between Control and Machine Learning Fall 2020
Solutions for Homework 2

1

(a) Denote the policy in the problem statement as . We can solve the Bellman equation.
The state value function J, is just a vector. We can solve J, as J, = (I — yP,)"'¢,. Here
¢u(1) = prc(i, a1) + (1 — p1)c(i, az). The (i, j)-th entry of P, is defined as p1 P(j,4,a1) + (1 —
p1)P(j,i,az) where P(j,i,a) := P(si11 = jlsy =i, a; = a).

We can also solve the Bellman equation for the Q)-factor. Specifically, we have

Q(i,a) = c(i,a) + 7Y P(j,i,0)[mQ(j, 1) + (1 = p1)Q(j, as)]

Jj=1

which is equivalent to another linear equation @), = ¢, +~vM,Q,, where the i-th row of M, is
[plP(l, iya1) (L—p1)P(1,i,a2) p1P(2,i,a1) (1 —p1)P(2,4,a9)...p1P(n,i,a1) (1 —p1)P(n,i, ag)},
and (@, ¢,) can be calculated as

Q(1,ay) c(1,ay)
Q(1,as) c(1, as)
Q(2,a1) c(2,ay)
Q. = Q(2,as) . c(2,az)
Q(n,ay) c(n,ay)
| Q(n,az) c(n,as) |

Then @, can be calculated as Q, = (I —yM,)'¢,. When the transition model is unknown,
one can apply temporal difference learning to learn value functions directly.

(b) At every t, the action a; is generated using the policy p given in Problem 2(a). Next
apply a; and measure s;;1 and c(s¢, a;). Then update the Q-factor as

Qi11(81,ar) = Qu(s¢, a) + v (c(s¢, ar) + v max[Qy(Se41, a1), Qi(Se11, a2)] — Qi(s¢, ar))

The size of the Q-table is 2n. If s, = ¢ and a; = a;, then we only update the (2i 4+ j — 2)-th
entry of the Q)-table at step t.

(c) For SARSA, we need to specify an initial action ag (which can be generated arbi-
trarily). At every step t, apply the action a;, and measure s;y; and c(s;,a;). Use Q¢ to
generate an e-greedy policy and then use this policy to sample an action a;; ;. Then update
the Q-factor as

Qi11(8,a1) = Qi(5¢,ar) + v (e(84, ar) + YQi(Ser1, Ary1) — Qi (1, ar))

2-1

ECE598ICM Fall 2020

So at step t > 1, the action a; is already generated using the e-greedy policy based on ();_;.

We can see that (Q-learning is off-policy in the sense that the choice of behavior policy can
be independent of ;. In contrast, SARSA is on policy since the behavior policy is directly
related to ;. Another difference is that in the update rules, Q-learning requires calculat-
ing max, Q¢(si11,a’) (which is equal to max[Q;(s;11,a1), Q¢(St+1,az2)] in this problem) and
SARSA directly applies Q¢(S¢i1, Gra1)-

2

(a) Given a linear policy K, it is straightforward to use induction to show

Vz)=rg+ ' <Z Y ((A—=BEK)NY(Q+ K"RK)(A — BK)t> T (1)

t=0

where 7 is some extra term introduced by the noise w;. Therefore, we can parameterize
the value function as 2" Pxx + rx. Therefore, we have

V(z) =2"(Q+ K 'RK)z + v (E((A— BK)z + w) Px((A— BK)z +w) +rx) (2)
Notice w is independent from z and has a zero mean, we have
E((A— BK)z +w)"Px((A — BK)z +w) = 2" (A — BK)"Pg(A — BK)z + E(w" Pxw)
Notice that the left side of (2) is just 7 Pxz + rx. Hence (2) can be rewritten as
o Pgr+rg =2 (Q+ K'RK)x + vz (A — BK)"Pg(A — BK)z +yE(w' Prw) 4+ yrg

To ensure that the quadratic functions on the left and right sides of the above equation are
the same, the following have to be true:

2" Prr=2"(Q+ K'RK)x +v2" (A — BK)"Px(A — BK)x
ri = YE(w' Pxw) + yrg
Hence, the Bellman equation becomes
Py =Q+ K'RK + (A — BK)"Pg(A — BK)

and rg = l%vE(wTPKw) = 175 trace(PW) where W is the covariance matrix of w.

For the Q-function, we have
Oz, u) =2"Qr +u' Ru-+~EV(Ax + Bu + w)
=2 Qr+u' Ru+YE(Az + Bu + w)" Pg(Az 4+ Bu + w) + yrg
=2' Qx4+ u' Ru+ vy(Azx + Bu)" Px(Ax + Bu) + y(E(w' Prw) + k)

2]’ Q +vATPA vAT P B x
u yBTPgkA R+~BTPgB| |u

1"‘7’[{

2-2

ECE598ICM Fall 2020

We can also directly parameterize Q(x,u) as

-
| |Qu Qiaf |2
yu) = +
2=[) o &2l [i] o
Notice V(z) = Q(z, —Kx). Therefore, we can substitute this into the above equation to
obtain the Bellman equation for Q:

Qx,u) = 2" Qz +u' Ru+yEQ (Ax 4+ Bu +w, —K(Az + Bu + w))

which is equivalent to

Qu Qu] _[Q 0], [A B[O Qu[4 B
9L, On| |0 R|T7|-KA —KB| |Ql, Qx| |-KA —KB

T
. w O Qo w
=l (o 2] L] e

When the model is unknown, we can apply the least square temporal difference (LSTD)
learning methods to estimate the value functions from data.

(b) Policy iteration: The PI algorithm iterates as K™™' = y(yBTP"B + R)"!BTP"A
where P, solves the Bellman equation v(A — BK™")TP"(A — BK") + Q + (K")TRK" =
P™. Another option is to evaluate Q for every step and then design a policy which is the
greedy policy for Q. Specifically, at every step n, we first solve the Q Bellman equation to
obtain (Q%,, Q,, Q%) (the policy evaluation step), and then update the policy as K, =
(95,)"1(Q%,)T (the policy improvement step).

If the model is unknown, we can use LSTD to estimate Q-Factor from data. Suppose
we choose the feature as ¢(z,u) and parameterize the Q-function as Qx (z,u) = 0" ¢(z,u).
Then we need to fit the weight vector §. We just generate a trajectory of {z;, u;}l_, using
Tpr1 = Axg + Buy + wy and uy = —Kxyp + vg. Here v is some noise added for exploration.
We fit 6 to minimize the target difference error as

0~ (Z_: D(e, u) (P(e, up) — VP (w41, —Kﬂl’tﬂ))T) <2_: c(xy, up) oy, ut)>

Notice v, should be large enough to explore the space thoroughly. One can also generate
(x4, uy) completely randomly for all t. Here u; can be completely random, and does not need
to be generated from policy K. For example, use a uniform distribution over [—1000, 1000]
to generate (4, u;). For all ¢, generate x} as x; = Ax; + Buy + w;. now estimate 6 as

0~ <Z O, ue) (@ (e, we) — vo(a}, —K%))T) <Z C(xtaut)¢<$t»ut))

t=0

2-3

ECE598ICM Fall 2020

(c) Here the optimal state-action value function is the Q-function associated with the
optimal policy. Q* can be solved from the optimal Bellman equation. Suppose the optimal
state value function is 27 Pz +r. We have

x"Pr+r = muin(:vTQx +u' Ru + yE(Ax 4+ Bu +w)" P(Az 4+ Bu 4+ w) + yr)
= muin(a:TQx +u' Ru + y(Ax + Bu)" P(Axz + Bu) + yEw' Pw + vr)
Taking gradient of the function on the right side with respect to u leads to
u=—y(R+~yB"PB)"'BTPAz.
which can be substituted back to get the following optimal Bellman equation:

P=Q+~vyA"PA—~*A"PB(R+~+B"PB)'B"PA

Then the optimal state-action value function can be calculated as

-
x} [Q—i—vATPA vyATPB] [x} trace(PTY)

Q' (wu) = {u vBTPA R+~BTPB| |u

L=

The fitted Q-iteration is value-based, i.e. it repeatedly fits the O-function and does not
generate the associated policy during the learning process. In contrast, the approximate
policy iteration searches over the policy space and hence is policy-based. At every step, the
API method generates a greedy policy from the Q-function associated with the last policy.

3
(a) The policy gradient theorem states that we can estimate the policy gradient as

[e.e]

VC(O) =E Y [v'¥,Vylog mp(us|x,)] (3)

t

where 6 parameterizes the stochastic policy, and ¥; can be calculated using one of the
following methods:

. . /7
e Monte Carlo estimation: >, 7" ey

Baselined versions of Monte Carlo estimation: > o, (7" “tcy — b(w))

State-action value function: Q™ (zy, u;)

Advantage function: A7 (x;, uy)

TD residual: ¢; +YV™(x441) — V7 (24)

2-4

ECE598ICM Fall 2020

(b) We will use the back propagation algorithm. Recall u; ~ N (W?2a(Wlo(W'x,)),c1).
Therefore, we directly have

1
log mg(ug|xy) = —56’1”% — I/I/2<7(I/V1U(I/Voxt))H2 +C (4)

where C' is some constant. To perform the back propagation algorithm, we define 2° = z,
Y = W0, 21 = o(h%), ' = W'l 22 = o(h'), and h* = W?2z2. Suppose the j-th
entry of h! is h'(j). Then we further define D' to be a diagonal matrix whose j-th diagonal
entry is equal to the derivative o’(h!(j)). Define €2 = 671 (u; — h?), et = (W2D1)Te? and
eV = (WLD%)Tel. Therefore, we can apply the back propagation algorithm to show

log o (ur|z) = €2(2)7

ow?

Bl log mg (| ;) = e'(2")7
—— log g (ue|zy) = 2(2%)7

ow

One can also expand the above formulas. For example, one can expand 8%,2 log mg(ug|xy) as

ETiE log mg(w|x,) = €2(23)7T = 6 (uy — W2 (W h(W oz) (o(W' o (W 2,)))T

% log 7o (u¢|z;) and % log g (us|z;) similarly. The details are omitted.

See Section 3.1 of the following survey paper for a detailed treatment of backpropogation:
https://arxiv.org/pdf/1912.08957.pdf

One can expand

(c) If the model is known, we can derive a closed-form gradient formula as follows. We
can take the total derivative of both sides of the Bellman equation to get

dPx = d(K"RK) 4+ vd (A — BK)"Px(A — BK))
By the chain rule, we have

d Py
=dK"RK + K"RdK + (A — BK)"dPx(A — BK) — vdK"B"Px(A — BK) — y(A — BK)" Py BdK
=dK" ((R+~B"PxkB)K —yB"PgA) + (K" (R+yB" PxB) —vA"PgB) dK

+~(A - BK)"dPg(A — BK)

If we view dPk as the variable, the above is a Bellman equation which can be solved as

dP =Y 7'((A~ BE))(dK T Ex + ERdK)(A — BE)'
t=0

2-5

ECE598ICM Fall 2020

where Ex = (R+7vB"PxB)K —yB" Px A. By definition, we have dC(K) =}, . K =
trace(VC(K)dKT). Since C(K) = trace(PxXo) + 12 trace(Px W), it is straightforward to

show VC(K) = 2E; X where S = > 2 V' E[z,z/].

4

The key finding is that the LSPI algorithm works efficiently for this problem while it
is much more difficult to make the fitted Q-iteration work. This demonstrates that it is
relatively easier to make policy-based RL methods work for control problems. A code for
the LSPI implementation is provided on the course website. Based on the simulation, the
LSPI method can converge to the optimal control gain within 10 iterations. See the code for
how to setup behavior policy for efficient exploration.

2-6

