
ECE598ICM: Interplay between Control and Machine Learning Fall 2020

Solutions for Homework 2

1

(a) Denote the policy in the problem statement as µ. We can solve the Bellman equation.
The state value function Jµ is just a vector. We can solve Jµ as Jµ = (I − γPµ)−1c̄µ. Here
c̄µ(i) = p1c(i, a1) + (1− p1)c(i, a2). The (i, j)-th entry of Pµ is defined as p1P (j, i, a1) + (1−
p1)P (j, i, a2) where P (j, i, a) := P (st+1 = j|st = i, at = a).

We can also solve the Bellman equation for the Q-factor. Specifically, we have

Q(i, a) = c(i, a) + γ
n∑
j=1

P (j, i, a)[p1Q(j, a1) + (1− p1)Q(j, a2)]

which is equivalent to another linear equation Qµ = ĉµ+γMµQµ where the i-th row of Mµ is[
p1P (1, i, a1) (1− p1)P (1, i, a2) p1P (2, i, a1) (1− p1)P (2, i, a2) . . . p1P (n, i, a1) (1− p1)P (n, i, a2)

]
,

and (Qµ, ĉµ) can be calculated as

Qµ =



Q(1, a1)
Q(1, a2)
Q(2, a1)
Q(2, a2)

...
Q(n, a1)
Q(n, a2)


, ĉµ =



c(1, a1)
c(1, a2)
c(2, a1)
c(2, a2)

...
c(n, a1)
c(n, a2)


Then Qµ can be calculated as Qµ = (I−γMµ)−1ĉµ. When the transition model is unknown,
one can apply temporal difference learning to learn value functions directly.

(b) At every t, the action at is generated using the policy µ given in Problem 2(a). Next
apply at and measure st+1 and c(st, at). Then update the Q-factor as

Qt+1(st, at) = Qt(st, at) + αt (c(st, at) + γmax[Qt(st+1, a1), Qt(st+1, a2)]−Qt(st, at))

The size of the Q-table is 2n. If st = i and at = aj, then we only update the (2i+ j − 2)-th
entry of the Q-table at step t.

(c) For SARSA, we need to specify an initial action a0 (which can be generated arbi-
trarily). At every step t, apply the action at, and measure st+1 and c(st, at). Use Qt to
generate an ε-greedy policy and then use this policy to sample an action at+1. Then update
the Q-factor as

Qt+1(st, at) = Qt(st, at) + αt (c(st, at) + γQt(st+1, at+1)−Qt(st, at))

2-1

ECE598ICM Fall 2020

So at step t ≥ 1, the action at is already generated using the ε-greedy policy based on Qt−1.
We can see that Q-learning is off-policy in the sense that the choice of behavior policy can

be independent of Qt. In contrast, SARSA is on policy since the behavior policy is directly
related to Qt. Another difference is that in the update rules, Q-learning requires calculat-
ing maxa′ Qt(st+1, a

′) (which is equal to max[Qt(st+1, a1), Qt(st+1, a2)] in this problem) and
SARSA directly applies Qt(st+1, at+1).

2

(a) Given a linear policy K, it is straightforward to use induction to show

V (x) = rK + xT

(
∞∑
t=0

γt((A−BK)T)t(Q+KTRK)(A−BK)t

)
x (1)

where rK is some extra term introduced by the noise wt. Therefore, we can parameterize
the value function as xTPKx+ rK . Therefore, we have

V (x) = xT(Q+KTRK)x+ γ
(
E((A−BK)x+ w)TPK((A−BK)x+ w) + rK

)
(2)

Notice w is independent from x and has a zero mean, we have

E((A−BK)x+ w)TPK((A−BK)x+ w) = xT(A−BK)TPK(A−BK)x+ E(wTPKw)

Notice that the left side of (2) is just xTPKx+ rK . Hence (2) can be rewritten as

xTPKx+ rK = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x+ γE(wTPKw) + γrK

To ensure that the quadratic functions on the left and right sides of the above equation are
the same, the following have to be true:

xTPKx = xT(Q+KTRK)x+ γxT(A−BK)TPK(A−BK)x

rK = γE(wTPKw) + γrK

Hence, the Bellman equation becomes

PK = Q+KTRK + γ(A−BK)TPK(A−BK)

and rK = γ
1−γE(wTPKw) = γ

1−γ trace(PW) where W is the covariance matrix of wt.
For the Q-function, we have

Q(x, u) = x>Qx+ u>Ru+ γEV (Ax+Bu+ w)

= x>Qx+ u>Ru+ γE(Ax+Bu+ w)TPK(Ax+Bu+ w) + γrK

= x>Qx+ u>Ru+ γ(Ax+Bu)TPK(Ax+Bu) + γ(E(wTPKw) + rK)

=

[
x
u

]T [
Q+ γATPKA γATPKB
γBTPKA R + γBTPKB

] [
x
u

]
+ rK

2-2

ECE598ICM Fall 2020

We can also directly parameterize Q(x, u) as

Q(x, u) =

[
x
u

]T [Q11 Q12

QT
12 Q22

] [
x
u

]
+ rK

Notice V (x) = Q(x,−Kx). Therefore, we can substitute this into the above equation to
obtain the Bellman equation for Q:

Q(x, u) = x>Qx+ u>Ru+ γEQ (Ax+Bu+ w,−K(Ax+Bu+ w))

which is equivalent to[
Q11 Q12

QT
12 Q22

]
=

[
Q 0
0 R

]
+ γ

[
A B
−KA −KB

]T [Q11 Q12

QT
12 Q22

] [
A B
−KA −KB

]
rK = γE

[
w
−Kw

]T [Q11 Q12

QT
12 Q22

] [
w
−Kw

]
+ γrK

When the model is unknown, we can apply the least square temporal difference (LSTD)
learning methods to estimate the value functions from data.

(b) Policy iteration: The PI algorithm iterates as Kn+1 = γ(γBTP nB + R)−1BTP nA
where Pn solves the Bellman equation γ(A − BKn)TP n(A − BKn) + Q + (Kn)TRKn =
P n. Another option is to evaluate Q for every step and then design a policy which is the
greedy policy for Q. Specifically, at every step n, we first solve the Q Bellman equation to
obtain (Qn11,Qn12,Qn22) (the policy evaluation step), and then update the policy as Kn+1 =
(Qn22)−1(Qn12)T (the policy improvement step).

If the model is unknown, we can use LSTD to estimate Q-Factor from data. Suppose
we choose the feature as φ(x, u) and parameterize the Q-function as QK(x, u) = θ>φ(x, u).
Then we need to fit the weight vector θ. We just generate a trajectory of {xt, ut}Tt=0 using
xk+1 = Axk +Buk + wk and uk = −Kxk + vk. Here vk is some noise added for exploration.
We fit θ to minimize the target difference error as

θ ≈

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(xt+1,−Kxt+1))
>

)−1(T−1∑
t=0

c(xt, ut)φ(xt, ut)

)

Notice vk should be large enough to explore the space thoroughly. One can also generate
(xt, ut) completely randomly for all t. Here ut can be completely random, and does not need
to be generated from policy K. For example, use a uniform distribution over [−1000, 1000]
to generate (xt, ut). For all t, generate x′t as x′t = Axt +But + wt. now estimate θ as

θ ≈

(
T∑
t=0

φ(xt, ut)(φ(xt, ut)− γφ(x′t,−Kx′t))>
)−1(T∑

t=0

c(xt, ut)φ(xt, ut)

)

2-3

ECE598ICM Fall 2020

(c) Here the optimal state-action value function is the Q-function associated with the
optimal policy. Q∗ can be solved from the optimal Bellman equation. Suppose the optimal
state value function is xTPx+ r. We have

xTPx+ r = min
u

(xTQx+ uTRu+ γE(Ax+Bu+ w)TP (Ax+Bu+ w) + γr)

= min
u

(xTQx+ uTRu+ γ(Ax+Bu)TP (Ax+Bu) + γEwTPw + γr)

Taking gradient of the function on the right side with respect to u leads to

u = −γ(R + γBTPB)−1BTPAx.

which can be substituted back to get the following optimal Bellman equation:

P = Q+ γATPA− γ2ATPB(R + γBTPB)−1BTPA

Then the optimal state-action value function can be calculated as

Q∗(x, u) =

[
x
u

]T [
Q+ γATPA γATPB
γBTPA R + γBTPB

] [
x
u

]
+

γ

1− γ
trace(PW)

The fitted Q-iteration is value-based, i.e. it repeatedly fits the Q-function and does not
generate the associated policy during the learning process. In contrast, the approximate
policy iteration searches over the policy space and hence is policy-based. At every step, the
API method generates a greedy policy from the Q-function associated with the last policy.

3

(a) The policy gradient theorem states that we can estimate the policy gradient as

∇C(θ) = E
∞∑
t=0

[γtΨt∇θ log πθ(ut|xt)] (3)

where θ parameterizes the stochastic policy, and Ψt can be calculated using one of the
following methods:

• Monte Carlo estimation:
∑∞

t′=t γ
t′−tct′

• Baselined versions of Monte Carlo estimation:
∑∞

t′=t(γ
t′−tct′ − b(xt))

• State-action value function: Qπ(xt, ut)

• Advantage function: Aπ(xt, ut)

• TD residual: ct + γV π(xt+1)− V π(xt)

2-4

ECE598ICM Fall 2020

(b) We will use the back propagation algorithm. Recall ut ∼ N (W 2σ(W 1σ(W 0xt)), σ̃I).
Therefore, we directly have

log πθ(ut|xt) = −1

2
σ̃−1‖ut −W 2σ(W 1σ(W 0xt))‖2 + C (4)

where C is some constant. To perform the back propagation algorithm, we define z0 = xt,
h0 = W 0z0, z1 = σ(h0), h1 = W 1z1, z2 = σ(h1), and h2 = W 2z2. Suppose the j-th
entry of hl is hl(j). Then we further define Dl to be a diagonal matrix whose j-th diagonal
entry is equal to the derivative σ′(hl(j)). Define e2 = σ̃−1(ut − h2), e1 = (W 2D1)Te2, and
e0 = (W 1D0)Te1. Therefore, we can apply the back propagation algorithm to show

∂

∂W 2
log πθ(ut|xt) = e2(z2)T

∂

∂W 1
log πθ(ut|xt) = e1(z1)T

∂

∂W 0
log πθ(ut|xt) = e0(z0)T

One can also expand the above formulas. For example, one can expand ∂
∂W 2 log πθ(ut|xt) as

∂

∂W 2
log πθ(ut|xt) = e2(z2)T = σ̃−1(ut −W 2σ(W 1h(W 0xt)))(σ(W 1σ(W 0xt)))

T

One can expand ∂
∂W 1 log πθ(ut|xt) and ∂

∂W 0 log πθ(ut|xt) similarly. The details are omitted.
See Section 3.1 of the following survey paper for a detailed treatment of backpropogation:

https://arxiv.org/pdf/1912.08957.pdf

(c) If the model is known, we can derive a closed-form gradient formula as follows. We
can take the total derivative of both sides of the Bellman equation to get

dPK = d(KTRK) + γd
(
(A−BK)TPK(A−BK)

)
By the chain rule, we have

dPK

=dKTRK +KTRdK + γ(A−BK)TdPK(A−BK)− γdKTBTPK(A−BK)− γ(A−BK)TPKBdK

=dKT
(
(R + γBTPKB)K − γBTPKA

)
+
(
KT(R + γBTPKB)− γATPKB

)
dK

+ γ(A−BK)TdPK(A−BK)

If we view dPK as the variable, the above is a Bellman equation which can be solved as

dPK =
∞∑
t=0

γt((A−BK)T)t(dKTEK + ET
KdK)(A−BK)t

2-5

ECE598ICM Fall 2020

where EK = (R+γBTPKB)K−γBTPKA. By definition, we have dC(K) =
∑

i,j
∂C
∂Kij

dKij =

trace(∇C(K)dKT). Since C(K) = trace(PKΣ0) + γ
1−γ trace(PKW), it is straightforward to

show ∇C(K) = 2EkΣK where ΣK =
∑∞

t=0 γ
tE[xtx

T
t].

.

4

The key finding is that the LSPI algorithm works efficiently for this problem while it
is much more difficult to make the fitted Q-iteration work. This demonstrates that it is
relatively easier to make policy-based RL methods work for control problems. A code for
the LSPI implementation is provided on the course website. Based on the simulation, the
LSPI method can converge to the optimal control gain within 10 iterations. See the code for
how to setup behavior policy for efficient exploration.

2-6

