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Feedback Control Machine learning

Unified and automated tools for a repeatable and trustable
design process of next generation intelligent systems



Example: Robustness is crucial!

® Deep learning: Small adversarial perturbations can fool the classifier!

Legitimate Sample Adversarial Perturbation Adversarial Sample

Stop Sign i % Yield Sign

® Optimization: The oracle can be inexact! 41 =z — a(V f(zi)+er)

® Decision and control: Model uncertainty and sim-to-real gap matter!




Control for Learning

Control theory addresses unified analysis and design of dynamical systems.

LTI systems

Markov jump systems

Lur'e systems

&1 = A&, + Buy,

Ekyr = Ak + Bijug

Epr1 = A&, + Bo(CE)

ATPA-P =<0

Sy PijAl PiA; < Pj

ATPA—-P A"PB

BTPA

B'PB

<M

Pros: Unified testing conditions when problem parameters are changed.

Cons: For control, we only need to solve the conditions numerically.

Control for learning: Algorithms and networks treated as control systems
® Neural networks as generalized Lur’e systems

® Stochastic learning algorithms as generalized Lur’e systems

Key message: Robustness can be addressed in a unified manner!



Learning for Control

Control theory addresses unified analysis and design of dynamical systems.

LTI systems MJLS Lur'e systems

Erhy1 = A&y + Bug | e = A3 & + By ug Ehp1 = A + Bo(C&y)

ATPA—-P ATPB

BTpa  BTpB| “M

ATPA—-P <0 | X0 pijATPA; < P;

Many control design methods rely on convex conditions (BGFB1994).
What about problems that cannot be formulated as convex optimization?

® Direct policy search (e.g. min J(K)) is nonconvex!

Learning for control: Tailoring nonconvex learning theory to push robust control
theory beyond the convex regime



Outline

e Control for Learning

® Control methods for certifiably robust neural networks
® A control perspective on stochastic learning algorithms

® |earning for Control
® Global convergence of direct policy search on robust control



Robust Control Theory

> A

P

A

1. Approximate the true system as “a linear system + a perturbation”
2. A can be a troublesome element: nonlinearity, uncertainty, or delays

3. Rich control literature including standard textbooks
® Zhou, Doyle, Glover, " Robust and optimal control,” 1996

4. Many tools: small gain, passivity, dissipativity, Zames-Falb multipliers, etc

5. The integral quadratic constraint (IQC) framework [Megretski, Rantzer
(TAC1997)] provides a unified analysis for “ LTl P + troublesome A"

6. Recently, IQC analysis has been extended for more general P

7. Typically, the stability is tested by a SDP condition
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Quadratic Constraints from Robust Control

Lur'e system: &1 = A&, + BA(CE).
EX: Gradient method (A =1, B=—al, C =1, and A = V)

Question: How to prove that the above Lur'e system converges? We are
looking at the following set of coupled sequences {&, wy, vy }

{(§&,w,v) : &1 = A&y + Bwy, v, = C&§} N {(& w,v) - wi = Avg) }

Key idea: Quadratic constraints! Replace the troublesome nonlinear
element A with the following quadratic constraint:

{(0w) = Alwy)) © {w,w): HM H so},

Wk

where M is constructed from the property of A.

If we can show that any sequence from the set below converges,

Wi Wi,

.
{(§7wav) &1 = A&, + Bwy, vy, = C&y, {Uk] M [Uk] < 0},

then we are done.
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Quadratic Constraints from Robust Control

Now we are analyzing the sequence from the following set:

wy,

T
{(ngav) : Ek-‘rl = Afk + Bwk’a Vi = CE]C? |::;l;:| M |:vk:| S O}

Theorem
If there exists a positive definite matrix P and 0 < p < 1 s.t.

ATPA— 2P ATPB]  [C oTM C 0
BTPA  B™PB| = |0 I 0 I

then 511—+1P§k+1 < p?&f P&y, and limy,_s o0 & = 0.

&1 [ATPA— 2P ATPB] [¢, _[& ire; oTM c 0] [&
Wi BTPA B'PB W | — |Wg 0 I 0 1| |wg

<0

&n 11 Pérr1—p2El PEy, Vg T Vg
M
Wg Wk

This condition is a semidefinite program (SDP) problem!
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lllustrative Example: Gradient Descent Method
® Rewrite the gradient method z;11 = xx — aVf(zy) as:
(P41 —2") = (a2 — 2”) —a Vf(zp)
—_—— —— ——
Ekt1 &k w
e If fis L-smooth and m-strongly convex, then by co-coercivity:
v —2*]" [ 2mLI —(m+L)I| |z —a* <0
Vf(x) —(m+ L)I 21 Vi(x)| =
M
® We have A=1, B=—al, C =1, and the following SDP
ATPA—p2P ATPB] [C 0 TM c 0
BTPA B'PB|— |0 I 0 I

. (1-p%)p —ap —2mL m+ L <
® This leads to ({ —ap aZp + — _9 ®I=0

® Choose (e, p,p) to be (1,1 — %, L?) or (2, f;—z, %(L+m|)|2) to
*

recover standard rates, i.e. |zp41 — 2*|| < (1 —m/L)||zp — x

® For this proof, is strong convexity really needed? No! Regularity condition!
13



lllustrative Example: Gradient Descent Method

We have shown ||zg41 — 2*]| < (1 —m/L)||xp — z*||

® Is it a contraction, i.e. [|zpy1 — 27 4] < (1 —m/L)||zp — 23,7
® (Tha1 = pyr) = (T — 73) —a (Vf(zk) = Vf(z}))
N———— N——

Sht1 &k wi,

If fis L-smooth and m-strongly convex, then by co-coercivity:

[Vf(;; - %’f(:z:’)] T [(imf or T L)I} [vf(;j - g’f(x,)} <0

M

We have A =1, B= —al, C = I, and the same SDP
Y _ _
([(1 p2)p ap]_'_{ 2mL m+L]>®I-<O

—ap a?p m-+ L —2

Choose (av, p, p) to be (1,1 — 2, L?) or (12—, f;—z, 1(L+ m)?) to give
the contraction result!

~
+

For this proof, is strong convexity really needed? Yes!

14



Outline

e Control for Learning

® Control methods for certifiably robust neural networks
® A control perspective on stochastic learning algorithms

® |earning for Control
® Global convergence of direct policy search on robust control
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Deep Learning for Classification

Deep learning has revolutionized the fields of Al and computer vision!

Input space X C R? to a label space IV := {1,..., H}.

Predict labels from image pixels

Neural network classifier function f := (fi,..., fg) : X — R such that

the predicted label for an input x is arg max; f; (2).

Input-label (z,y) is correctly classified if arg max; f;(x) = y.

A PR

\VWARV//

LANY Y

OQutput
Cat
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Deep Learning Models

—

<]
eV B
v = el s
e ; - 55
s, Cat
Deep learning models: f(x) = xpy1 and zg =
® Feedforward: xp41 = o(Wyay + by) for k=0,1,---,D
® Residual network: xp41 = 2 — oc(Wiay + bg) for k=0,1,--- , D

® Many other structures: transformers, etc

Deep learning models are expressive and generalize well, achieving state-of-the-art

results in computer vision and natural language processing. However, ...
17



Adversarial Attacks and Robustness

Legitimate Sample Adversarial Perturbation Adversarial Sample

:u Stop Sign ] - % Yield Sign

® For correct labels (i.e. argmax; f;(x) = y), one may find ||7]| < ¢ s.t.
argmax; f;j(x + 7) # y (small perturbation lead to wrong prediction)

® Small perturbation can fool modern deep learning models!
® How to deploy deep learning models into safety-critical applications?

® Certified robustness: A classifier f is certifiably robust at radius € > 0 at
point z with label y if for all 7 such that ||7]| <& : argmax; fj(z +7) =y

18



1-Lipschitz Networks for Certified Robustness
® Tsuzuku, Sato, Sugiyama (NeurlPS2018): Let f be L-Lipschitz. If we have
Me(w) i= max(0, £, () — max fy (x)) > V2Le
y'#y
then we have for every 7 such that |7[|z <e: argmax; fj(z +7) =y
® Perturbation smaller than Mg (2)/v/2L cannot deceive f for datapoint !

® |f each layer of a network is 1-Lipchitz, the entire network is 1-Lipschitz.

® For each data point, we test whether M¢(x) > v/2¢, and then count the
percentage of data points that is guaranteed to be guarded for perturbation
smaller than € (which is the certified accuracy for that ¢).

® We need to train a Lipschitz neural network with good prediction margins!
Previous approaches:

® Spectral normalization (MKKY2018): 2341 =0¢ (Mkak + bk)

® Orthogonality (TK2021, SF2021): xj41 = o(Wyxk + bi) with WIW, =T

e Convex potential layer (MDAA2022): xp+q1 = ap — ﬁWka(W;—x + b)
112

® AOL (PL2022): wpr1 = o(Widiag(X; [Wy Wilij) ™2k + bi)

19



My Focus: Principles for 1-Lipschitz Networks
Theorem (AHDAH2023)

If there exists nonsingular diagonal T}, s.t. W,fT Wy =< Ty, then we have
_1
1. The layer x11 = o(Wi T, *x) + bi) is 1-Lipschitz for any I-Lipschitz o.

2. The layer xj11 =z, — 2W3, T, ‘o (Wl x + by) is 1-Lipschitz if o is ReLU.

_1 _1
\2 = (vg — T’;c)TTk QWkTWka (zp — z;f)

N EPEEAR

_1
ka1 = ThpalI* < W T ? (2x — )

The second statement can be proved using the quadratic constraint argument.

A Unification of Existing 1-Lipschitz Neural Networks

® Spectral normalization: Statement 1 with T, = ||[W}||3]

* Orthogonal weights: Statement 1 with T, = I and W, W}, = I
e CPL: Statement 2 with T}, = ||Wy||31

AOL: Statement 1 with Ty, = diag(3__, [W, Wils;)

Control Theory (SLL): T}, = diag(3_7_, [W)] Wilijq;/a:)-

20



Experimental Results
4 versions of SDP-based Lipchitz Network (SLL) (S, M, L, XL)

Natural Provable Accuracy (¢)

Datasets Models
Accuracy 36 72 108 1
255 255 255

Cayley Large 43.3 292 188 11.0 -

SOC 20 48.3 344 227 142 -
SOC+ 20 47.8 348 237 158 -
CPL XL 47.8 334 209 126 -
CIFAR100 AOL Large 43.7 33.7 263 207 738
SLL Small 45.8 347 265 204 72
SLL Medium 46.5 356 273 211 7.7
SLL Large 46.9 36.2 279 216 79

SLL X-Large 47.6 365 282 218 8.2

® Competitive results over CIFAR100 and TinylmageNet

® Many extensions: Lipschitz deep equilibrium models, neural ODEs, etc



Quadratic Constraints for Lipschitz Networks

* Residual network: zj.1 = 7 — Gro(W xy, + by) for k=0,1,--- , D.

* 1-Lipschitz layer: How to enforce ||zp41 — o || < [log — 2|7

(#hi1 = Thyy) = (wx — ) =G (oWl zg, + by) — o(W)l ), + b))
—_————  Y———

Ekt1 &k w

We will use the property of ¢ to construct M} such that we only need to
look at the following set with Ay = I and B, = —Gj:

Wk

.
{(f,w) 2 €kt1 = Arér + Brw, Fk} M, E}Z] < 0} )

® Then we can ensure [[&41]| < ||| via enforcing a SDP for the set:

ATPA,— P AIPB, &1 [ATA, — T ATB,] [é
= k k <
[ BIPA,  B]PB, *M’f? we| | BT4y  BIBy| |w| =°

€kral=lExlP=lZrt1—z) o 1P llzk— 12
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Quadratic Constraints for Lipschitz Networks

® Since o is slope-restricted on [0, 1], the following scalar-version incremental
quadratic constraint holds with m =0 and L = 1:

LJ:Z}aqH_(iszL) ] L D] =0

-

® The vector-version quadratic constraint: For diagonal I'y, = 0, we have

e T N g e TR

Xk

® Choosing v, = Wz, + by, and v}, = W[z} + by, we have

W (z), — ) Ty W (zy, — ) <0
o(Wlak +by) —o(Wlaj, +bx) | F [o(Wlak +b) — o (Wlap, + )] =

23



Quadratic Constraints for Lipschitz Networks

T
o We get [iﬂ M [iﬂ < 0 with M, = [Wk 0} { 0 —Fk] [WJ O}

0 I||-Ty 2Tx|| 0 T
0 — Wi T
S VA L ANE) W

Theorem
If there exists diagonal Ty, = 0 such that

0 —Gk = 0 _Wkrk
-G} GIGg| = |-TuW§ 2l

then the residual network xy11 = xy — Gka(Wkak + by) is 1-Lipschitz.

® Analytical solution: G = WiI'y, and FkW];er].—‘k =< 2T.
® Suppose I'y is nonsingular, and T, = 21“,;1. Then the residual network
Tpil = Tp — 2Wka_10(W,;ra:k + by) is 1-Lipschitz as long as T}, = W;Wk

® Ref: Araujo, Havens, Delattre, Allauzen, H.. A unifying algebraic
perspective on Lipschitz neural networks, ICLR, 2023. (Spotlight)
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Outline

e Control for Learning

® Control Methods on Certifiably Robust Neural Networks
® A Control Perspective on Stochastic Learning Algorithms

® |earning for Control
® Global convergence of direct policy search on robust control
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History: Computer-Assisted Proofs in Optimization

In the past ten years, much progress has been made in leveraging SDPs to assist
the convergence rate analysis of optimization methods.

Drori and Teboulle (MP2014): numerical worst-case bounds via the
performance estimation problem (PEP) formulation

Lessard, Recht, Packard (SIOPT2016): numerical linear rate bounds using
integral quadratic constraints (IQCs) from robust control theory

Taylor, Hendrickx, Glineur (MP2017): interpolation conditions for PEPs
H., Lessard (ICML2017): first SDP-based analytical proof for Nesterov's
accelerated rate

H., Seiler, Ranzter (COLT2017): first paper on SDP-based convergence
proofs for stochastic optimization using jump system theory and 1QCs

Van Scoy, Freeman, and Lynch (LCSS2017): first paper on control-oriented
design of accelerated methods: triple momentum

Taken further by different groups

inexact gradient methods, proximal gradient methods, conditional gradient
methods, operator splitting methods, mirror descent methods, distributed
gradient methods, monotone inclusion problems %



Stochastic Methods for Machine Learning

® Many learning tasks (regression/classification) lead to finite-sum ERM
min Z fia
where f;(z) = l;(z) + AR(x) (I; is the loss, and R avoids over-fitting).

® Stochastic gradient descent (SGD): zy+1 = zx — oV f;, (zk)

® Inexact oracle: xp+1 =z — a(Vfi, (zk) + er) where |lex|| < ||V fi, (zi)]|
(the angle 6 between (e, + V f;, (zx)) and V f;, (v) satisfies |sin(0)| < J)

® Algorithm change: SAG (SRF2017) vs. SAGA (DBL2014)

Vi
S/—\G:xk"'lzxk—a( f’”( ylk—&- Z )

1
AGA: zFt1 = 2F — Vf; ko4 Z k
S oFtl = gk a( fio (2" yl*’—i_n;_ly”)

ko1 [ Vi(ah) ifi=
where y;/ " 1= { yk otherwise

® Markov assumption: In reinforcement learning, {ix} can be Markovian 27



My Focus: Unified Analysis of Stochastic Methods

Assumption
® f; smooth, f RSI
® ;. is lID or Markovian
® Oracle is exact or inexact

® many other possibilities

Method
e SGD
® SAGA-like methods

® Temporal difference learning

Bound
* Elai — 2*]? < e pF + O(a)
o Elay —2*| < ez p*

® Other forms

How to automate rate analysis of stochastic learning algorithms? Use
numerical semidefinite programs to support search for analytical proofs?

assumption + method

—>  bound J

28



My Focus: Stochastic Methods for Learning

In the deterministic setting, we just need to show that the trajectories generated
by optimization methods belong to the following set:

.
{(&w’v) 2 &kr1 = A&y + Bwg, vy = C¢&, Bﬂ M; {Uk] <Ajj€ H}

Wi

What to do for stochastic optimization (e.g. xp+1 = x — aVf;, (xr) where
ir € {1,--- ,n} is sampled)?

e Stochastic quadratic constraints: Show that the trajectories generated by
stochastic optimization methods belong to the following set:

Wy ({

.
{(i,ww) : &pr1 = Ay + Bwy, vy = &, E {Lk} M; [Lk} <Ajj€ H}

e Jump system approach: Show that the trajectories generated by stochastic
optimization methods belong to the following set:

T
{(57 ’lU,’U) : £k+1 — Aikgk + Bik/wk-, VU = Ci;,-,é-ka |:ZZ}I;:| Mj |:Z)];:| S Ajv] S H}

where Azk € {A1,-~- ,An}, Bik S {Bl,“- ,Bn}, and Czk € {017“' ,Cn}

29



Stochastic Quadratic Constraints

Suppose we can show that the trajectories generated by stochastic optimization
methods belong to the following set:

Wi Wk

.
{(f,wm) L €1 = A&y + By, vp = C&, E [“’“} M; {“’f} <Ajje H}

Theorem

If there exists a positive definite matrix P, non-negative A\; and 0 < p <1 s.t.

ATPA—p*P A'PB C 0 c 0
[ BTPA BTPB] ZA[ }Mi {0 I]

then BEJ,  Pépy1 < p°EBEL PE, + > jen Aid

] [T e e < Sl a2

&1 Pérp1—p2EL PEy,

Then take expectation and apply the expected quadratic constraints!
30



Main Result: Analysis of Biased SGD

Consider 211 = 2 — a(V fi, (zk) + ex) with [lex||? < 82|V fi, (zx)||* + 2

If ¢ =0, the bound means the angle § between (e, + Vf;, (z%)) and
V fi. (z1) satisfies | sin(9)| < 6

Rewritten as (241 — %) = (z — 2*) + [l —al] [Vfik (»Tk)]
—_— €k

[ &k hu,—/
Uk

Assume the restricted secant inequality Vf(z)"(x — 2*) > m|z — z*|?

Assume f; is L-smooth, i.e. |V fi(x) — Vfi(x*)|| < L|jx — ||

Tp —x* "TomI —I 0 E—T
1st QC: E | Vfi, (zk) —I 0 0| |Vfi(zx)] < 0
€L 0 0 0 €L A1
M,y
ap—a* 1T [=202 0 0] [ — 2
2nd QC: E | Vf;, (zx) 0 I 0| |Vfi(zk) ZHVL )12
ek 0 0 0 ek
| —

M, Az



Main Result: Analysis of Biased SGD

® We can rewrite |ex||? < 82|V fi, (zk)|*> + 2 as

T — x* i 0 0 0 E— T
E | Vfi, (zk) 0 —62I 0| |Vfi (zx)| <
€k 0 0 I ex el
—_—
M;

® Wehave A=1, B= [—a[ —a[], C =1, and the following SDP

ATPA— 2P ATPB <§‘°’:A C 0 c 0
BTPA  BTPB % 0 I
Jj=

® Biased SGD satisfies E||zx 41 — 2*||? < p?E||zs, — 2*[|2 + AaAg + A3c? if

1—0p —« -« —2m 1 0 22 0 0
—a  a? =08 a? +A | 1 0 0Ol +X| O -1 0|=0
—« o? a? 4 A3 0 0 0

0 0 0



Main Result: Analysis of Biased SGD

® Given E|zg — 2*||? < Uy, set Uxs1 = min(p?Uy, + AaAg + A3c?) with

1—p? -« -« —2m 1 0 22 0 0
—a  a? =58\ a? +A | 1 0 Ol +Xx | 0 -1 0|=0
-« a? a?+ A3 0 0 0 0 0 0

then we have E||z), — 2*||* < Uy. This leads to a sequential SDP problem.

® This problem has an exact solution

2
Ups1 = (a\/c2 ¥ 020, + 2L25%U; + /(1 — 2ma + 2L2a2)Uy, + A2a2>

: 24 52A m(c?(2L% —m?)+(1-6%)Aym? 2
® limg oo Uy = nszirggziz + (e (m2—2)52(L2)2 2 )a+0(a )

® Rate=1— %a +0(a?)
® For different assumptions, modify (A}, A;)!

e H., Seiler, and Lessard. Analysis of biased stochastic gradient descent using
sequential semidefinite programs. Mathematical Programming, 2021

® Syed, Dall’Anese, H.. Bounds for the tracking error and dynamic regret of

inexact online optimization methods: A unified analysis via sequential SDPs.
33



Jump System Approach

1 <~ [ATPA;, — p?P ATPB; c o' [c o
nz{ BTPA,  BpE| 2N lo 1| Milo 1
=1 Jell

Pros:

® General enough to handle many algorithms: H., Seiler, Rantzer (COLT2017)

Method Aik Bik C
I, —ej el 0 e el ~
SAGA n i Ciy, k Sy OT 1
{—%(c —neg, )T 1} {aegj [ ]
I,—e,el 0 ei el .
SAG |: n i €y, :| k Gy, OT 1
e, 0 L o 1)

e General enough to handle Markov {ix}: Syed and H. (NeurlPS2019), Guo
and H. (ACC2022a,2022b)

Cons:

® SDPs are much bigger than the ones obtained from stochastic quadratic
constraints, and we have to exploit SDP structures for simplifications

34



Control for Learning: Summary

® |[terative learning algorithms and neural network layers can be thought as
feedback control systems.

® The quadratic constraint approach from control theory can be leveraged to
formulate SDP conditions for machine learning research.

e Different from the study in control, now we want to obtain analytical
solutions of the SDPs!

35



Outline

e Control for Learning

® Control methods on certifiably robust neural networks
® A control perspective on stochastic learning algorithms

¢ Learning for Control
® Global convergence of direct policy search on robust control
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