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Feedback Control

• dynamical systems

• robustness

• safety-critical

• model-based design

• CDC/ACC/ECC

Machine learning

• statistics/optimization

• large-scale (big data)

• performance-driven

• train using data

• NeurIPS/ICML/ICLR
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Artificial Intelligence Revolution

Safety-critical applications!
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Flight Control Certification

Ref: J. Renfrow, S. Liebler, and J. Denham. “F-14 Flight Control Law Design,
Verification, and Validation Using Computer Aided Engineering Tools,” 1996.
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Feedback Control Machine learning

Unified and automated tools for a repeatable and trustable
design process of next generation intelligent systems
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Example: Robustness is crucial!
• Deep learning: Small adversarial perturbations can fool the classifier!

• Optimization: The oracle can be inexact! xk+1 = xk − α(∇f(xk)+ek)

• Decision and control: Model uncertainty and sim-to-real gap matter!
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Control for Learning

Control theory addresses unified analysis and design of dynamical systems.

LTI systems Markov jump systems Lur’e systems

ξk+1 = Aξk +Buk ξk+1 = Aikξk +Bikuk ξk+1 = Aξk +Bφ(Cξk)

ATPA− P ≺ 0
∑n
i=1 pijA

T
i PiAi ≺ Pj

[
ATPA− P ATPB
BTPA BTPB

]
≺M

Pros: Unified testing conditions when problem parameters are changed.

Cons: For control, we only need to solve the conditions numerically.

Control for learning: Algorithms and networks treated as control systems

• Neural networks as generalized Lur’e systems

• Stochastic learning algorithms as generalized Lur’e systems

Key message: Robustness can be addressed in a unified manner!
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Learning for Control

Control theory addresses unified analysis and design of dynamical systems.

LTI systems MJLS Lur’e systems

ξk+1 = Aξk +Buk ξk+1 = Aikξk +Bikuk ξk+1 = Aξk +Bφ(Cξk)

ATPA− P ≺ 0
∑n
i=1 pijA

T
i PiAi ≺ Pj

[
ATPA− P ATPB
BTPA BTPB

]
≺M

Many control design methods rely on convex conditions (BGFB1994).
What about problems that cannot be formulated as convex optimization?

• Direct policy search (e.g. min J(K)) is nonconvex!

Learning for control: Tailoring nonconvex learning theory to push robust control

theory beyond the convex regime
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Outline

• Control for Learning
• Control methods for certifiably robust neural networks
• A control perspective on stochastic learning algorithms

• Learning for Control
• Global convergence of direct policy search on robust control
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Robust Control Theory

P

∆

v

-
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1. Approximate the true system as “a linear system + a perturbation”

2. ∆ can be a troublesome element: nonlinearity, uncertainty, or delays

3. Rich control literature including standard textbooks

• Zhou, Doyle, Glover, “ Robust and optimal control,” 1996

4. Many tools: small gain, passivity, dissipativity, Zames-Falb multipliers, etc

5. The integral quadratic constraint (IQC) framework [Megretski, Rantzer
(TAC1997)] provides a unified analysis for “ LTI P + troublesome ∆”

6. Recently, IQC analysis has been extended for more general P

7. Typically, the stability is tested by a SDP condition
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Quadratic Constraints from Robust Control

• Lur’e system: ξk+1 = Aξk +B∆(Cξk).

• EX: Gradient method (A = I, B = −αI, C = I, and ∆ = ∇f)

• Question: How to prove that the above Lur’e system converges? We are
looking at the following set of coupled sequences {ξk, wk, vk}

{(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk} ∩ {(ξ, w, v) : wk = ∆(vk)}

• Key idea: Quadratic constraints! Replace the troublesome nonlinear
element ∆ with the following quadratic constraint:

{(v, w) : wk = ∆(vk)} ⊂

{
(v, w) :

[
vk
wk

]T
M

[
vk
wk

]
≤ 0

}
,

where M is constructed from the property of ∆.

• If we can show that any sequence from the set below converges,{
(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk,

[
vk
wk

]T
M

[
vk
wk

]
≤ 0

}
,

then we are done.
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Quadratic Constraints from Robust Control
Now we are analyzing the sequence from the following set:{

(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk,

[
vk
wk

]T
M

[
vk
wk

]
≤ 0

}

Theorem
If there exists a positive definite matrix P and 0 < ρ < 1 s.t.[

ATPA− ρ2P ATPB
BTPA BTPB

]
�
[
C 0
0 I

]T
M

[
C 0
0 I

]
then ξTk+1Pξk+1 ≤ ρ2ξTkPξk and limk→∞ ξk = 0.[

ξk
wk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξk
wk

]
︸ ︷︷ ︸

ξTk+1Pξk+1−ρ2ξTkPξk

≤
[
ξk
wk

]T [
C 0
0 I

]T
M

[
C 0
0 I

] [
ξk
wk

]
︸ ︷︷ ︸vk

wk

T

M

vk
wk

≤0

This condition is a semidefinite program (SDP) problem!
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Illustrative Example: Gradient Descent Method
• Rewrite the gradient method xk+1 = xk − α∇f(xk) as:

(xk+1 − x?)︸ ︷︷ ︸
ξk+1

= (xk − x?)︸ ︷︷ ︸
ξk

−α∇f(xk)︸ ︷︷ ︸
wk

• If f is L-smooth and m-strongly convex, then by co-coercivity:[
x− x?
∇f(x)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

]
︸ ︷︷ ︸

M

[
x− x?
∇f(x)

]
≤ 0

• We have A = I, B = −αI, C = I, and the following SDP[
ATPA− ρ2P ATPB

BTPA BTPB

]
�
[
C 0
0 I

]T
M

[
C 0
0 I

]
• This leads to

([
(1− ρ2)p −αp
−αp α2p

]
+

[
−2mL m+ L
m+ L −2

])
⊗ I � 0

• Choose (α, ρ, p) to be ( 1
L , 1−

m
L , L

2) or ( 2
L+m ,

L−m
L+m ,

1
2 (L+m)2) to

recover standard rates, i.e. ‖xk+1 − x?‖ ≤ (1−m/L)‖xk − x?‖
• For this proof, is strong convexity really needed? No! Regularity condition!
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Illustrative Example: Gradient Descent Method
• We have shown ‖xk+1 − x?‖ ≤ (1−m/L)‖xk − x?‖
• Is it a contraction, i.e. ‖xk+1 − x′k+1‖ ≤ (1−m/L)‖xk − x′k‖?
• (xk+1 − x′k+1)︸ ︷︷ ︸

ξk+1

= (xk − x′k)︸ ︷︷ ︸
ξk

−α (∇f(xk)−∇f(x′k))︸ ︷︷ ︸
wk

• If f is L-smooth and m-strongly convex, then by co-coercivity:[
x− x′

∇f(x)−∇f(x′)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

]
︸ ︷︷ ︸

M

[
x− x′

∇f(x)−∇f(x′)

]
≤ 0

• We have A = I, B = −αI, C = I, and the same SDP([
(1− ρ2)p −αp
−αp α2p

]
+

[
−2mL m+ L
m+ L −2

])
⊗ I � 0

• Choose (α, ρ, p) to be ( 1
L , 1−

m
L , L

2) or ( 2
L+m ,

L−m
L+m ,

1
2 (L+m)2) to give

the contraction result!

• For this proof, is strong convexity really needed? Yes!
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Outline

• Control for Learning
• Control methods for certifiably robust neural networks
• A control perspective on stochastic learning algorithms

• Learning for Control
• Global convergence of direct policy search on robust control
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Deep Learning for Classification
Deep learning has revolutionized the fields of AI and computer vision!

• Input space X ⊂ Rd to a label space Y := {1, . . . ,H}.
• Predict labels from image pixels

• Neural network classifier function f := (f1, . . . , fH) : X → RH such that
the predicted label for an input x is arg maxj fj(x).

• Input-label (x, y) is correctly classified if arg maxj fj(x) = y.
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Deep Learning Models

Deep learning models: f(x) = xD+1 and x0 = x

• Feedforward: xk+1 = σ(Wkxk + bk) for k = 0, 1, · · · , D
• Residual network: xk+1 = xk − σ(Wkxk + bk) for k = 0, 1, · · · , D
• Many other structures: transformers, etc

Deep learning models are expressive and generalize well, achieving state-of-the-art
results in computer vision and natural language processing. However, ...
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Adversarial Attacks and Robustness

• For correct labels (i.e. arg maxj fj(x) = y), one may find ‖τ‖ ≤ ε s.t.
arg maxj fj(x+ τ) 6= y (small perturbation lead to wrong prediction)

• Small perturbation can fool modern deep learning models!

• How to deploy deep learning models into safety-critical applications?

• Certified robustness: A classifier f is certifiably robust at radius ε ≥ 0 at
point x with label y if for all τ such that ‖τ‖ ≤ ε : arg maxj fj(x+ τ) = y
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1-Lipschitz Networks for Certified Robustness
• Tsuzuku, Sato, Sugiyama (NeurIPS2018): Let f be L-Lipschitz. If we have

Mf (x) := max(0, fy(x)−max
y′ 6=y

fy′(x)) >
√

2Lε

then we have for every τ such that ‖τ‖2 ≤ ε: arg maxj fj(x+ τ) = y

• Perturbation smaller than Mf (x)/
√

2L cannot deceive f for datapoint x!

• If each layer of a network is 1-Lipchitz, the entire network is 1-Lipschitz.

• For each data point, we test whether Mf (x) >
√

2ε, and then count the
percentage of data points that is guaranteed to be guarded for perturbation
smaller than ε (which is the certified accuracy for that ε).

• We need to train a Lipschitz neural network with good prediction margins!

Previous approaches:

• Spectral normalization (MKKY2018): xk+1 = σ
(

1
‖Wk‖2Wkxk + bk

)
• Orthogonality (TK2021, SF2021): xk+1 = σ(Wkxk + bk) with WT

kWk = I

• Convex potential layer (MDAA2022): xk+1 = xk − 2
‖Wk‖22

Wkσ(WT
k x+ bk)

• AOL (PL2022): xk+1 = σ(Wkdiag(
∑
j |WT

kWk|ij)−
1
2xk + bk)
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My Focus: Principles for 1-Lipschitz Networks

Theorem (AHDAH2023)
If there exists nonsingular diagonal Tk s.t. WT

kWk � Tk, then we have

1. The layer xk+1 = σ(WkT
− 1

2

k xk + bk) is 1-Lipschitz for any 1-Lipschitz σ.

2. The layer xk+1 = xk − 2WkT
−1
k σ(WT

k x+ bk) is 1-Lipschitz if σ is ReLU.

‖xk+1 − x′k+1‖2 ≤ ‖WkT
− 1

2

k (xk − x′k)‖2 = (xk − x′k)TT
− 1

2

k WT
kWkT

− 1
2

k (xk − x′k)︸ ︷︷ ︸
≤‖xk−x′

k‖2

The second statement can be proved using the quadratic constraint argument.

A Unification of Existing 1-Lipschitz Neural Networks
• Spectral normalization: Statement 1 with Tk = ‖Wk‖22I
• Orthogonal weights: Statement 1 with Tk = I and WT

kWk = I

• CPL: Statement 2 with Tk = ‖Wk‖22I
• AOL: Statement 1 with Tk = diag(

∑n
j=1 |WT

kWk|ij)

• Control Theory (SLL): Tk = diag(
∑n
j=1 |WT

kWk|ijqj/qi).
20



Experimental Results
4 versions of SDP-based Lipchitz Network (SLL) (S, M, L, XL)

Datasets Models
Natural

Accuracy

Provable Accuracy (ε)

36
255

72
255

108
255 1

CIFAR100

Cayley Large 43.3 29.2 18.8 11.0 -
SOC 20 48.3 34.4 22.7 14.2 -
SOC+ 20 47.8 34.8 23.7 15.8 -
CPL XL 47.8 33.4 20.9 12.6 -
AOL Large 43.7 33.7 26.3 20.7 7.8

SLL Small 45.8 34.7 26.5 20.4 7.2
SLL Medium 46.5 35.6 27.3 21.1 7.7
SLL Large 46.9 36.2 27.9 21.6 7.9
SLL X-Large 47.6 36.5 28.2 21.8 8.2

• Competitive results over CIFAR100 and TinyImageNet

• Many extensions: Lipschitz deep equilibrium models, neural ODEs, etc
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Quadratic Constraints for Lipschitz Networks

• Residual network: xk+1 = xk −Gkσ(WT
k xk + bk) for k = 0, 1, · · · , D.

• 1-Lipschitz layer: How to enforce ‖xk+1 − x′k+1‖ ≤ ‖xk − x′k‖?

• (xk+1 − x′k+1)︸ ︷︷ ︸
ξk+1

= (xk − x′k)︸ ︷︷ ︸
ξk

−Gk
(
σ(WT

k xk + bk)− σ(WT
k x
′
k + bk)

)︸ ︷︷ ︸
wk

• We will use the property of σ to construct Mk such that we only need to
look at the following set with Ak = I and Bk = −Gk:{

(ξ, w) : ξk+1 = Akξk +Bkwk,

[
ξk
wk

]T
Mk

[
ξk
wk

]
≤ 0

}
,

• Then we can ensure ‖ξk+1‖ ≤ ‖ξk‖ via enforcing a SDP for the set:

[
AT
kPAk − P AT

kPBk
BT
kPAk BT

kPBk

]
�Mk =⇒︸︷︷︸

P=I

[
ξk
wk

]T [
AT
kAk − I AT

kBk
BT
kAk BT

kBk

] [
ξk
wk

]
︸ ︷︷ ︸
‖ξk+1‖2−‖ξk‖2=‖xk+1−x′

k+1‖2−‖xk−x′
k‖2

≤ 0
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Quadratic Constraints for Lipschitz Networks

• Since σ is slope-restricted on [0, 1], the following scalar-version incremental
quadratic constraint holds with m = 0 and L = 1:[

a− a′
σ(a)− σ(a′)

]T [
2mL −(m+ L)

−(m+ L) 2

]
︸ ︷︷ ︸ 0 −1

−1 2



[
a− a′

σ(a)− σ(a′)

]
≤ 0

• The vector-version quadratic constraint: For diagonal Γk � 0, we have[
vk − v′k

σ(vk)− σ(v′k)

]T [
0 −Γk
−Γk 2Γk

]
︸ ︷︷ ︸

Xk

[
vk − v′k

σ(vk)− σ(v′k)

]
≤ 0

• Choosing vk = WT
k xk + bk and v′k = WT

k x
′
k + bk, we have[

WT
k (xk − x′k)

σ(WT
k xk + bk)− σ(WT

k x
′
k + bk)

]T
Xk

[
WT
k (xk − x′k)

σ(WT
k xk + bk)− σ(WT

k x
′
k + bk)

]
≤ 0
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Quadratic Constraints for Lipschitz Networks

• We get

[
ξk
wk

]T
Mk

[
ξk
wk

]
≤ 0 with Mk =

[
Wk 0
0 I

] [
0 −Γk
−Γk 2Γk

] [
WT
k 0

0 I

]
︸ ︷︷ ︸ 0 −WkΓk

−ΓkW
T
k 2Γk


Theorem
If there exists diagonal Γk � 0 such that[

0 −Gk
−GT

k GT
kGk

]
�
[

0 −WkΓk
−ΓkW

T
k 2Γk

]
then the residual network xk+1 = xk −Gkσ(WT

k xk + bk) is 1-Lipschitz.

• Analytical solution: Gk = WkΓk and ΓkW
T
kWkΓk � 2Γk.

• Suppose Γk is nonsingular, and Tk = 2Γ−1
k . Then the residual network

xk+1 = xk − 2WkT
−1
k σ(WT

k xk + bk) is 1-Lipschitz as long as Tk �WT
kWk

• Ref: Araujo, Havens, Delattre, Allauzen, H.. A unifying algebraic
perspective on Lipschitz neural networks, ICLR, 2023. (Spotlight)
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Outline

• Control for Learning
• Control Methods on Certifiably Robust Neural Networks
• A Control Perspective on Stochastic Learning Algorithms

• Learning for Control
• Global convergence of direct policy search on robust control
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History: Computer-Assisted Proofs in Optimization
In the past ten years, much progress has been made in leveraging SDPs to assist
the convergence rate analysis of optimization methods.

• Drori and Teboulle (MP2014): numerical worst-case bounds via the
performance estimation problem (PEP) formulation

• Lessard, Recht, Packard (SIOPT2016): numerical linear rate bounds using
integral quadratic constraints (IQCs) from robust control theory

• Taylor, Hendrickx, Glineur (MP2017): interpolation conditions for PEPs

• H., Lessard (ICML2017): first SDP-based analytical proof for Nesterov’s
accelerated rate

• H., Seiler, Ranzter (COLT2017): first paper on SDP-based convergence
proofs for stochastic optimization using jump system theory and IQCs

• Van Scoy, Freeman, and Lynch (LCSS2017): first paper on control-oriented
design of accelerated methods: triple momentum

Taken further by different groups

• inexact gradient methods, proximal gradient methods, conditional gradient
methods, operator splitting methods, mirror descent methods, distributed
gradient methods, monotone inclusion problems 26



Stochastic Methods for Machine Learning
• Many learning tasks (regression/classification) lead to finite-sum ERM

min
x∈Rp

1

n

n∑
i=1

fi(x)

where fi(x) = li(x) + λR(x) (li is the loss, and R avoids over-fitting).

• Stochastic gradient descent (SGD): xk+1 = xk − α∇fik(xk)

• Inexact oracle: xk+1 = xk − α(∇fik(xk) + ek) where ‖ek‖ ≤ δ‖∇fik(xk)‖
(the angle θ between (ek +∇fik(xk)) and ∇fik(xk) satisfies | sin(θ)| ≤ δ)

• Algorithm change: SAG (SRF2017) vs. SAGA (DBL2014)

SAG: xk+1 = xk − α

(
∇fik(xk)− ykik

n
+

1

n

n∑
i=1

yki

)

SAGA:xk+1 = xk − α

(
∇fik(xk)− ykik +

1

n

n∑
i=1

yki

)

where yk+1
i :=

{
∇fi(xk) if i = ik
yki otherwise

• Markov assumption: In reinforcement learning, {ik} can be Markovian 27



My Focus: Unified Analysis of Stochastic Methods
Assumption

• fi smooth, f RSI

• ik is IID or Markovian

• Oracle is exact or inexact

• many other possibilities

Method

• SGD

• SAGA-like methods

• Temporal difference learning



Bound

• E‖xk − x?‖2 ≤ c2 ρk +O(α)

• E‖xk − x?‖2 ≤ c2 ρk

• Other forms

How to automate rate analysis of stochastic learning algorithms? Use
numerical semidefinite programs to support search for analytical proofs?

assumption + method =⇒ bound

28



My Focus: Stochastic Methods for Learning
In the deterministic setting, we just need to show that the trajectories generated
by optimization methods belong to the following set:{

(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk,

[
vk
wk

]T
Mj

[
vk
wk

]
≤ Λj , j ∈ Π

}
What to do for stochastic optimization (e.g. xk+1 = xk − α∇fik(xk) where
ik ∈ {1, · · · , n} is sampled)?

• Stochastic quadratic constraints: Show that the trajectories generated by
stochastic optimization methods belong to the following set:{

(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk,E
[
vk
wk

]T
Mj

[
vk
wk

]
≤ Λj , j ∈ Π

}

• Jump system approach: Show that the trajectories generated by stochastic
optimization methods belong to the following set:{

(ξ, w, v) : ξk+1 = Aikξk +Bikwk, vk = Cikξk,

[
vk
wk

]T
Mj

[
vk
wk

]
≤ Λj , j ∈ Π

}
where Aik ∈ {A1, · · · , An}, Bik ∈ {B1, · · · , Bn}, and Cik ∈ {C1, · · · , Cn}

29



Stochastic Quadratic Constraints
Suppose we can show that the trajectories generated by stochastic optimization
methods belong to the following set:{

(ξ, w, v) : ξk+1 = Aξk +Bwk, vk = Cξk,E
[
vk
wk

]T
Mj

[
vk
wk

]
≤ Λj , j ∈ Π

}

Theorem
If there exists a positive definite matrix P , non-negative λj and 0 < ρ < 1 s.t.[

ATPA− ρ2P ATPB
BTPA BTPB

]
�
∑
j∈Π

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]

then EξTk+1Pξk+1 ≤ ρ2EξTkPξk +
∑
j∈Π λjΛj .[

ξk
wk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξk
wk

]
︸ ︷︷ ︸

ξTk+1Pξk+1−ρ2ξTkPξk

≤
∑
j∈Π

λj

[
vk
wk

]T
Mj

[
vk
wk

]

Then take expectation and apply the expected quadratic constraints!
30



Main Result: Analysis of Biased SGD
• Consider xk+1 = xk − α(∇fik(xk) + ek) with ‖ek‖2 ≤ δ2‖∇fik(xk)‖2 + c2

• If c = 0, the bound means the angle θ between (ek +∇fik(xk)) and
∇fik(xk) satisfies | sin(θ)| ≤ δ

• Rewritten as (xk+1 − x?)︸ ︷︷ ︸
ξk+1

= (xk − x?)︸ ︷︷ ︸
ξk

+
[
−αI −αI

] [∇fik(xk)
ek

]
︸ ︷︷ ︸

wk

• Assume the restricted secant inequality ∇f(x)T(x− x?) ≥ m‖x− x?‖2

• Assume fi is L-smooth, i.e. ‖∇fi(x)−∇fi(x?)‖ ≤ L‖x− x?‖

• 1st QC: E

 xk − x?∇fik(xk)
ek

T 2mI −I 0
−I 0 0
0 0 0


︸ ︷︷ ︸

M1

 xk − x?∇fik(xk)
ek

 ≤ 0︸︷︷︸
Λ1

• 2nd QC: E

 xk − x?∇fik(xk)
ek

T −2L2I 0 0
0 I 0
0 0 0


︸ ︷︷ ︸

M2

 xk − x?∇fik(xk)
ek

 ≤ 2

n

n∑
i=1

‖∇fi(x?)‖2︸ ︷︷ ︸
Λ2
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Main Result: Analysis of Biased SGD
• We can rewrite ‖ek‖2 ≤ δ2‖∇fik(xk)‖2 + c2 as

E

 xk − x?∇fik(xk)
ek

T 0 0 0
0 −δ2I 0
0 0 I


︸ ︷︷ ︸

M3

 xk − x?∇fik(xk)
ek

 ≤ c2︸︷︷︸
Λ3

• We have A = I, B =
[
−αI −αI

]
, C = I, and the following SDP[

ATPA− ρ2P ATPB
BTPA BTPB

]
�

3∑
j=1

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]

• Biased SGD satisfies E‖xk+1 − x?‖2 ≤ ρ2E‖xk − x?‖2 + λ2Λ2 + λ3c
2 if1− ρ2 −α −α

−α α2 − δ2λ3 α2

−α α2 α2 + λ3

+ λ1

−2m 1 0
1 0 0
0 0 0

+ λ2

2L2 0 0
0 −1 0
0 0 0

 � 0
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Main Result: Analysis of Biased SGD
• Given E‖x0 − x?‖2 ≤ U0, set Uk+1 = min(ρ2Uk + λ2Λ2 + λ3c

2) with1− ρ2 −α −α
−α α2 − δ2λ3 α2

−α α2 α2 + λ3

+ λ1

−2m 1 0
1 0 0
0 0 0

+ λ2

2L2 0 0
0 −1 0
0 0 0

 � 0

then we have E‖xk − x?‖2 ≤ Uk. This leads to a sequential SDP problem.

• This problem has an exact solution

Uk+1 =
(
α
√
c2 + δ2Λ2 + 2L2δ2Uk +

√
(1− 2mα+ 2L2α2)Uk + Λ2α2

)2

• limk→∞ Uk = c2+δ2Λ2

m2−2δ2L2 + m(c2(2L2−m2)+(1−δ2)Λ2m
2)

(m2−2δ2L2)2 α+O(α2)

• Rate = 1− m2−2δ2L2

m α+O(α2)

• For different assumptions, modify (Mj ,Λj)!

• H., Seiler, and Lessard. Analysis of biased stochastic gradient descent using
sequential semidefinite programs. Mathematical Programming, 2021

• Syed, Dall’Anese, H.. Bounds for the tracking error and dynamic regret of
inexact online optimization methods: A unified analysis via sequential SDPs.
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Jump System Approach

1

n

n∑
i=1

[
AT
i PAi − ρ2P AT

i PBi
BT
i PAi BT

i PBi

]
�
∑
j∈Π

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]
Pros:

• General enough to handle many algorithms: H., Seiler, Rantzer (COLT2017)

Method Ãik B̃ik C̃

SAGA

[
In − eikeTik 0̃
−αn (e− neik)T 1

] [
eike

T
ik

−αeTik

] [
0̃T 1

]
SAG

[
In − eikeTik 0̃
−αn (e− eik)T 1

] [
eike

T
ik

−αne
T
ik

] [
0̃T 1

]
• General enough to handle Markov {ik}: Syed and H. (NeurIPS2019), Guo

and H. (ACC2022a,2022b)

Cons:

• SDPs are much bigger than the ones obtained from stochastic quadratic
constraints, and we have to exploit SDP structures for simplifications
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Control for Learning: Summary

• Iterative learning algorithms and neural network layers can be thought as
feedback control systems.

• The quadratic constraint approach from control theory can be leveraged to
formulate SDP conditions for machine learning research.

• Different from the study in control, now we want to obtain analytical
solutions of the SDPs!
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Outline

• Control for Learning
• Control methods on certifiably robust neural networks
• A control perspective on stochastic learning algorithms

• Learning for Control
• Global convergence of direct policy search on robust control

36


