
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Homework 1

Instructor: Bin Hu Due date: September 21, 2023

1. (20 points) Consider the gradient method xk+1 = xk − α∇f(xk) and assume f is
L-smooth and m-strongly convex. In the class, we have shown that the gradient method
converges at the rate ρ if there exists non-negative λ such that[

1− ρ2 −α
−α α2

]
≤ λ

[
2mL −(m+ L)

−(m+ L) 2

]
Your task is to apply the above condition to show that the gradient descent method with
any constant stepsize 0 < α < 2

L
converges at the rate ρ = max{|1−mα|, |1− Lα|}. Write

out the proof. What is the choice of λ?
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2. (30 points) In this problem, you will be asked to perform several calculations, and
these calculations eventually lead to the convergence rate proof for Nesterov’s accelerated
method applied to smooth strongly-convex objective functions. Recall Nesterov’s method is
defined by the following recursion:

xk+1 = xk + β(xk − xk−1)− α∇f((1 + β)xk − βxk−1)

which can also be written as

ξk+1 = Aξk +Bwk

vk = Cξk

wk = ∇f(vk)

where A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
.

(a) Assume f is L-smooth and m-strongly convex. By L-smoothness and m-strong con-
vexity, we have

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(xk − vk) +

m

2
‖xk − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X1

 xk − x∗
xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)

T(xk − vk) + m
2
‖xk − vk‖2 +∇f(vk)

T(vk −
xk+1) − L

2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X1 (actually this matrix has already been given in the lecture
note).

(b) Similarly, by L-smoothness and m-strong convexity, we have

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(x∗ − vk) +

m

2
‖x∗ − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)

T(x∗ − vk) + m
2
‖x∗ − vk‖2 +∇f(vk)

T(vk −
xk+1) − L

2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X2.
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(c) Now based on the inequalities in (a) and (b), you can simply choose X = ρ2X1 + (1−
ρ2)X2 for any 0 < ρ < 1, and we have xk − x∗

xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)

 ≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

Based on the testing condition presented in the class, if there exists P ≥ 0 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0 (1)

then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)


≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

which directly leads to the linear convergence rate for Nesterov’s method:

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗) + f(xk+1)− f(x∗) ≤ ρ2
(
(ξk − ξ∗)TP (ξk − ξ∗) + f(xk)− f(x∗)

)
.

Finding P to satisfy (1) is not trivial. Your task is to verify (1) holds with P =

1
2

[ √
LI

(
√
m−

√
L)I

] [√
LI (

√
m−

√
L)I
]
≥ 0, ρ2 = 1 −

√
m
L

, α = 1
L

, and β =
√
L−
√
m√

L+
√
m

.

This gives a complete proof for the accelerated rate of Nesterov’s method.
(Hint: The calculation here can be lengthy. So you are allowed to use some symbolic

toolbox to help as long as you turn in the code.)
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3. (20 points) Consider a nonlinear system xk+1 = f(xk, uk, wk) where xk is the state, uk
is the action, and wk is the process noised sampled from an IID Gaussian distribution. The
objective is to choose uk to minimize the cost

C = E
∞∑
k=0

γkc(xk, uk) (2)

where 0 < γ < 1 is the discount factor. Suppose f is unknown, and we want to learn policy
from sampled trajectories of {(xk, uk)}.

(a) What is the policy gradient theorem? Write out the statement.

(b) When using the policy gradient theorem, we inject noise into the control actions for
exploration purposes. Suppose now we want to directly learn a deterministic policy using
evolution strategies which are based on the following estimation of the policy gradient:

∇C(K) ≈
Eε∼N (0,σ2I)C(K + ε)ε

σ2

To understand this update rule, we analyze a shifted variant of the above update:

g =
Eε∼N (0,σ2I)(C(K + ε)− C(K))ε

σ2
=

Eε∼N (0,I)(C(K + σε)− C(K))ε

σ

Roughly speaking, the above estimation shifts the original zeroth-order gradient estimate
with a zero mean vector and should not change the mean of the gradient estimator. Your
task is to apply the fact limσ→0

C(K+σε)−C(K)
σ

= (∇C(K))Tε to show the following equation:

Eε∼N (0,I)

(
lim
σ→0

C(K + σε)− C(K)

σ

)
ε = ∇C(K)

(Remark: Now you can see σ serves as a stepsize for the stochastic finite difference
estimation. In the setting of data-driven control, typically we only have samples of C.
Choosing σ to be too small can amplify this error, and hence one has to tune σ carefully.)

(Hint: Relevant derivations can be found in the lecture note.)
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4. (30 points) Consider a continuous-time LQR problem. We have ẋ(t) = Ax(t) +Bu(t)
with x(0) ∼ D. The quadratic cost is defined as

C = Ex(0)∼D
∫ ∞
0

[x(t)TQx(t) + u(t)TRu(t)]dt

(a) Suppose we are using the state-feedback policy u(t) = Kx(t). Suppose K is stabiliz-
ing, i.e. (A+BK) is Hurwitz. What is the cost C(K)? Derive a cost formula from Lyapunov
equation.

(b) Given (A,B,Q,R), what is the gradient formula ∇C(K)? (Hint: Some relevant
derivations can be found in Section 3 of the paper “Computational design of optimal output
feedback controllers.”)

(c) Now apply the gradient descent method Kl+t1 = Kl − α∇C(Kl). Suppose we have
already proved that {Kl} will stay in a compact sublevel set where C(K) is L-smooth and
also satisfies the following gradient dominance property:

C(K)− C(K∗) ≤ 1

2µ
‖∇C(K)‖2F (3)

where K∗ is the optimal policy, and µ is some positive constant. Your task is to further
prove C(Kl)− C(K∗) ≤ (1− 2µα + µLα2)l(C(K0)− C(K∗)) for any 0 < α < 2

L
.
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