
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Homework 3

Instructor: Bin Hu Due date: Nov 2, 2023

1. This problem is about using control theory to study stochastic gradient descent (SGD)
and SAGA. In the class, we talked about how to analyze SGD under the assumptions that
f is m-strongly convex and fi is L-smooth and convex. Here you are asked to analyze SGD
under a different set of assumptions:

• f satisfies the “one-point convexity” condition: f has a unique global minimizer x∗

and for all x, one has (x− x∗)T∇f(x) ≥ m∥x− x∗∥2 with m > 0.

• fi is L-smooth for all i.

Under the above assumptions, f and fi are not convex in general. However, you can still
obtain a convergence bound for SGD under these assumptions.

(a) (15 points) Suppose vk = ∇fik(wk). Based on the above assumptions, the following
two inequalities hold
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Use the above inequalities to prove that if there exists non-negative λ1 and λ2 such that[
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then SGD satisfies the bound

E∥xk − x∗∥2 ≤ ρ2kE∥x0 − x∗∥2 + λ1M

1− ρ2

(b) (15 points) Use the above LMI condition to show that SGD satisfies the following
bound:

E∥xk − x∗∥2 ≤ (1− 2mα + 2L2α2)kE∥x0 − x∗∥2 + α2M

2mα− 2L2α2
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(c) (15 points) Finally, analyze SAGA under the assumption that fi is L-smooth and m-
strongly convex for all i. Under this assumption, f is also L-smooth and m-strongly convex.
Suppose a uniform sampling is used, i.e. pi =

1
n
. Set n = 5, L = 10, m = 1, and α = 1

3L
.

Show that SAGA converges at the rate ρ2 = 1−min{ 1
3n
, m
3L
} in this case.
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2. (30 points) In this question we will revisit the problem of certifying control barrier
functions (CBF) from expert demonstrations, but using an alternative approach to Lipschitz
properties. Consider the control affine system

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) ∈ Rn.

Suppose we have expert trajectory data Zdyn := {(xi, ui)}N1
i=1 such that the state data

Xsafe := {xi}N1
i=1 forms an ε-net over the set D, a region of the safe set (i.e. for each

x ∈ D, there is some xi ∈ Xsafe such that ∥x− xi∥ ≤ ε). Similarly, we are given sampled
data Xunsafe := {xi}N2

i=1 that forms an ε-net over an unsafe region N that we would like to
avoid.

Now, suppose we are given a candidate continuously differentiable CBF h : Rn → R
(perhaps parameterized by a neural-network), an extended class K function α and slack
constant γ > 0 satisfying:

1) h(xi) ≥ γ for all xi ∈ Xsafe

2) h(xi) ≤ −γ for all xi ∈ Xunsafe

3) q(xi, ui) := ⟨∇h(xi), f(xi) + g(xi)ui⟩+ α(h(xi)) ≥ γ for all (xi, ui) ∈ Zdyn

In addition, assume that h and q are locally bounded near our data in the following sense:

∥xi − x∥ ≤ ε =⇒ ∥h(xi)− h(x)∥ ≤ δ(xi, ε), ∀xi ∈ Xsafe ∪ Xunsafe

and

∥xi − x∥ ≤ ε =⇒ ∥q(xi, ui)− q(x, ui)∥ ≤ δ(xi, ε), ∀(xi, ui) ∈ Zdyn

Prove that if δ(xi, ε) ≤ γ for all xi ∈ Xsafe ∪ Xunsafe, then:

a) h(x) ≥ 0 for all x ∈ D.

b) h(x) ≤ 0 for all x ∈ N .

c) supu∈U ⟨∇h(x), f(x) + g(x)u⟩ ≥ −α(h(x)) for all x ∈ D.

Hint: The proof is very similar to the one done in class using Lipschitz constants. In
fact, if f is L-Lipschitz, we get a similar local bound:

∥xi − x∥ ≤ ε =⇒ ∥f(xi)− f(x)∥ ≤ L∥xi − x∥ ≤ Lε =: δ(xi, ε)

and so our local bound assumption is weaker than being Lipschitz.
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3.(25 points) Consider the TD(0) with linear function approximation. Under policy π,
suppose the state {sk} forms a Markov chain with the transition probability pij = P (ik+1 =
j|ik = i). TD(0) iterates as

θk+1 − θπ = θk − θπ + εAik(θk − θπ) + ε(Aikθπ + bik), (2)

where
∑n

i=1 p
∞
i (Aiθπ+bi) = 0 with p∞i := limk→∞ P (ik = i). Write out an analytical formula

for the mean square TD error E∥θk − θπ∥2 as a function of {Ai, bi, pij} and (θ0, θπ).
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