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In the last lecture, we briefly discuss the idea of the measurement-robust CBF approach.
Let’s first review the basic setup. Suppose a perception module p has been designed to
produce the state estimation x̂(t) := p(y(t)), which is then used for generating control
actions. To guarantee safety, we need to design control actions u based on x̂ to ensure that C
becomes a forward invariant set, i.e. x(t) ∈ C = {x : h(x) ≥ 0} ∀t if x(0) ∈ C. For simplicity,
we assume that some error bound ‖x− x̂‖ ≤ r is available1. Then h is a measurement-robust
CBF if it satisfies

sup
u∈U

inf
x∈X (x̂)

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
≥ 0,

where X (x̂) = {x : ‖x− x̂‖ ≤ r} is a set capturing the error in the state estimation. If h
is a measurement-robust CBF, then given the current state estimation x̂, one can choose u
satisfying

inf
x∈X (x̂)

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
≥ 0 (10.1)

such that the resultant controller ensures the forward invariance of C under the estimation
error r. However, it is quite difficult to pose the above constraint in a computationally
efficient manner. In this lecture, we discuss how to relax (10.1) for computational tractability.
We will present some simplified version of the results in [1].

10.1 SOCP Relaxation for Measurement-Robust CBF

We needs to develop a lower bound M(x̂, u) for the left side of (10.1). If we can ensure

M(x̂, u) ≤ inf
x∈X (x̂)

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
,

then any u satisfying M(x̂, u) ≥ 0 will guarantee (10.1) to hold as desired. In addition, we
want the dependence of M on u to be not relatively simple so that the following optimization
problem can be efficiently solved in real time.

ksafe(x̂) = arg min
u∈U

1

2
‖u− kd(x̂)‖2

s.t.M(x̂, u) ≥ 0

(10.2)

1We will elaborate on this bound later.
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In [1], the lower bound M(x̂, u) is constructed using Lipschitz continuity. Let’s explain
the main idea. Specifically, suppose ∂h

∂x
(·)f(·) is L1-Lipschitz. Then we have

∂h

∂x
(x̂)f(x̂)− ∂h

∂x
(x)f(x) ≤

∣∣∂h
∂x

(x̂)f(x̂)− ∂h

∂x
(x)f(x)

∣∣ ≤ L1‖x̂− x‖, (10.3)

which leads to

∂h

∂x
(x)f(x) ≥ ∂h

∂x
(x̂)f(x̂)− L1‖x̂− x‖

For any x ∈ X (x̂), we have ‖x̂− x‖ ≤ r. Therefore, for any x ∈ X (x̂), we must have

∂h

∂x
(x)f(x) ≥ ∂h

∂x
(x̂)f(x̂)− L1r. (10.4)

Similarly, suppose ∂h
∂x

(·)g(·) is L2-Lipschitz. Then the following inequality can be proved
using a combination of previous arguments and the Cauchy-Schwartz inequality:

∂h

∂x
(x)g(x)u ≥ ∂h

∂x
(x̂)g(x̂)u− L2r‖u‖, for any x ∈ X (x̂) (10.5)

Finally, denote α̃(x̂) = infx∈X (x̂) α(h(x)), which can be quickly searched since α(h(·)) is a
1-D function. Now we can combine (10.4) and (10.5) to obtain the following lower bound:

M(x̂, u) =
∂h

∂x
(x̂)f(x̂) +

∂h

∂x
(x̂)g(x̂)u− L2r‖u‖ − L1r + α̃(x̂) (10.6)

≤ inf
x∈X (x̂)

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
. (10.7)

Therefore, if we can find u satisfying ∂h
∂x

(x̂)f(x̂) + ∂h
∂x

(x̂)g(x̂)u−L2r‖u‖−L1r+ α̃(x̂) ≥ 0,

we can ensure ḣ ≤ −α(h) over the state trajectory such that h(x(t)) ≥ 0 for all t. Eventually
we can use the following safety filter to ensure safety (i.e. x(t) ∈ C for all t):

ksafe(x̂) = arg min
u∈U

1

2
‖u− kd(x̂)‖2

s.t.
∂h

∂x
(x̂)f(x̂) +

∂h

∂x
(x̂)g(x̂)u− L2r‖u‖ − L1r + α̃(x̂) ≥ 0

(10.8)

Notice that there is a term on ‖u‖ in the above constraint. Consequently, the safety filter
ksafe needs to solve a second-order cone programming (SOCP) subproblem at every t to find
the provably safe control actions. With the controller ksafe ◦ kd embedded into the system,
the set C becomes a forward invariant set for the closed-loop system. Based on the idea in
[1], we can say h is a measurement-robust CBF if the following condition holds

sup
u∈U

{
∂h

∂x
(x̂)f(x̂) +

∂h

∂x
(x̂)g(x̂)u− L2r‖u‖ − L1r + α̃(x̂)

}
≥ 0. (10.9)
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Under the above condition, the SOCP problem in (10.8) is feasible. However, it is typically
quite difficult to check the above condition. To address this issue, [1] has developed more
tractable conditions which directly pose bounds on r to ensure the feasibility of (10.8). See
[1, Theorem 3] for more details.

It is also pointed out in [1] that the practical implementation of (10.8) relies on intro-
ducing an extra slack variable for improving feasibility. The following optimization problem
is actually implemented:

ksafe(x̂) = arg min
u∈U

1

2
‖u− kd(x̂)‖2 + pδ2

s.t.
∂h

∂x
(x̂)f(x̂) +

∂h

∂x
(x̂)g(x̂)u− L2r‖u‖ − L1r + α̃(x̂) + δ ≥ 0

(10.10)

where p is a large positive constant. The above formulation can also guarantee that the
resultant controller is locally Lipschitz continuous.

10.2 More Discussions on the State Estimation Errors

Is it reasonable to pose a uniform state estimation error bound r? Based on some extra
assumptions, some justifications can be provided [1]. Here we try to provide some simple
intuitive explanations.

Assumptions. The assumptions in [1] are listed as follows.

• The environment is assumed to be static, and hence we have y(t) = s(x(t)).

• The image generation process s is assumed to be deterministic and locally Lipschitz.

• It is assumed that s can be inverted, i.e. there exists a locally Lipschitz function s−1

such that s−1(s(x(t))) = x(t). This is a very strong assumption. Notice that the
perception module p can be viewed as an approximated version of s−1.

Explanations. Let’s say p is learned from data, and hence there is some difference between
p and s−1. We define the state estimation error as

e(x(t)) = x̂(t)− x(t) = p(y(t))− x(t) = p(s(x(t)))− x(t) (10.11)

If p = s−1, then we have e(x(t)) = 0. Since p is only an approximation of s−1, we can
think e(·) is a function mapping x(t) to a state-dependent estimation error. Suppose p and
s are continuous. If C is compact, then one can apply Weierstrass theorem to argue that
a uniform bound on ‖e(x(t))‖ exists over the set C. This provides an intuitive explanation
for the use of the uniform error bound. We want to emphasize that the above assumptions
are very restrictive. In general, the environment can be uncertain, and y(t) depends on
external environmental factors. And the image generation process is typically not invertible.
How to adapt CBFs for those scenarios is a good research question that requires further
investigation.
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