
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 11
Control Tools for Stochastic Optimization and Supervised Learning, Part I

Lecturer: Bin Hu, Date:09/26/2023

In this lecture, we will talk about stochastic optimization methods for the following
empirical risk minimization (ERM) problem in supervised learning:

minimize
x∈Rp

f(x) :=
1

n

n∑
i=1

fi(x) (11.1)

where f : Rp → R is a strongly-convex objective function. We will introduce several popular
stochastic optimization algorithms and discuss how these methods can be represented as
feedback dynamical systems as shown in Figure 11.1. In the next lecture, we will discuss
how the dissipation inequality approach covered in the previous lecture can be used to unify
the analysis of stochastic optimization methods.

G

∆

v

-

w

�

Figure 11.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

11.1 Motivations: ERM and Supervised Learning

ERM is a key paradigm in machine learning and naturally leads to the optimization prob-
lem (11.1). Specifically, many supervised learning tasks, including ridge regression, logistic
regression, and support vector machines, can be formulated as the following problem

minimize
x∈Rp

f(x) :=
1

n

n∑
i=1

li(x) + λΩ(x)

Here one wants to fit some prediction/classification model parameterized by x using the
training data. The training set consists of n data points. The task is to fit a model x that
works well for all the “unseen” data.

11-1



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

Interpretations for li(x). The loss function li(x) measures how well x performs on the
i-th data point in the training set. If li(x) is large, it means that the “loss” on the i-th data
point is big and the model x works poorly on this data point. If li(x) is small, it means the
“loss” on the i-th data point is small and the model x works well on this data point. By
minimizing the empirical risk 1

n

∑n
i=1 li(x), one expects the model x to work reasonably well

for training data. This prevents underfitting.

Importance of Ω(x). If we allow the model to be arbitrarily complicated, we can obtain
zero loss on training data but the model will work poorly on the data that have not been seen.
This is called over-fitting. Roughly speaking, the difference between the model performance
on the training data and the unseen data is called generalization error. One way to prevent
overfitting and induce generalization is to add a regularizer Ω(x) that measures the model
complexity. By adding such a term in the cost function, one expects the complexity of
the resultant x is somehow controlled and hence the model x should “generalize” to the
unseen data.1 For example, one can choose Ω(x) = ‖x‖2, and there exists some learning
theory (e.g. stability theory) that can be used to explain how such `2-regularization induces
generalization. Confining the search of x on small norm models can help generalization in
many situations. Sometime Ω(x) is used to induce other desired structures. For example,
the `1-regularization is typically used to induce sparsity.

What is λ? In ERM, λ is a hyperparameter which is tuned to trade off training per-
formance and generalization. For the purpose of this course, let’s say λ is a fixed positive
number. In practice, λ is typically set as a small number between 10−8 and 0.1.

Example 1: Ridge regression. The ridge regression is formulated as an ERM problem
with the following objective function

f(x) =
1

n

n∑
i=1

(aTi x− bi)2 +
λ

2
‖x‖2 (11.2)

where ai ∈ Rp and bi ∈ R are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear relationship
between a and b. One wants to predict b from a as b = aTx. The ridge regression gives
a way to find such x based on the observed pairs of (ai, bi).

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is just the `2-regularizer. It confines

the complexity of the linear predictors you want to use. The high-level idea is that you
want x to work for all (a, b), not just the observed pairs (ai, bi). Again, this is called
generalization in machine learning. So adding such a term can induce the so-called
stability and helps the predictor x to “generalize” for the data you have not seen. You
need to take a machine learning course if you want to learn about generalization.

1What we mean is that the model x should work similarly on the training data and the unseen data.

11-2



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

• What is λ? λ is a hyperparameter which is tuned to trade off training performance
and generalization. Again, λ is typically set as a small number between 10−8 and 0.1.

It is worth mentioning that f is L-smooth and m-strongly convex in this case. It is straight-
forward to verify that

f(x) =
1

2
xT

(
2

n

n∑
i=1

aia
T
i + λI

)
x−

(
2

n

n∑
i=1

biai

)T

x+
1

n

n∑
i=1

b2i

which is a special case of the positive definite quadratic minimization problem. Notice
2
n

∑n
i=1 aia

T
i + λI > 0 and hence f is m-strongly convex and L-smooth (why?). Therefore,

we can apply the gradient method to ridge regression, and obtain a convergence rate ρ = 1− 1
κ

where κ is the condition number of the positive definite matrix 2
n

∑n
i=1 aia

T
i + λI.

Example 2: `2-Regularized Logistic regression. The `2-regularized logistic regression
is formulated as an ERM problem with the following objective function

f(x) =
1

n

n∑
i=1

log(1 + e−bia
T
i x) +

λ

2
‖x‖2 (11.3)

where ai ∈ Rp and bi ∈ {−1, 1} are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear “classifier”
between a and b. Let’s say you have collected a lot of images of cats and dogs. You
augment the pixels of any such image into a vector a and wants to predict whether the
image is a cat or a dog. Let’s say b = 1 if the image is a cat, and b = −1 if the image
is a dog. So you want to predict b based on a. You want to find x such that b = 1
when aTx ≥ 0, and b = −1 when aTx < 0. The logistic regression gives a way to find
such x based on the observed feature/label pairs of (ai, bi). You may want to take a
statistics course or a machine learning course if you want to learn more about logistic
regression.

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is the `2-regularizer. It is used

to induce generalization and help x work on all the (a, b) not just the observed data
points (ai, bi).

The function (11.3) is also L-smooth and m-strongly convex.

Other examples. There are many other convex examples including multi-class logistic
regression, support vector machines, elastic nets, and PCA. The ERM problems in deep
learning involve non-convex loss functions. The optimization of deep learning has not been
fully understood and it is an important research topic.

11-3



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

Finite-sum Structure of ERM. The ERM problem is in the form of the finite-sum
optimization (11.1) where f = 1

n

∑n
i=1 fi. If we apply the gradient method or Nesterov’s

method, we need to evaluate ∇f = 1
n

∑n
i=1∇fi for each iteration. In other words, we need

to evaluate the gradient on all the data points. The computation cost for each iteration
scales with O(n). For big data applications, n is typically very large. The per iteration cost
of the gradient method and Nesterov’s method is high. This motivates the use of stochastic
optimization methods that sample one or a small batch of data points for gradient estimate
at every iteration. In stochastic optimization, the computation cost for each iteration does
not depend on n and scales with O(1). The hope is that there will be a lot of redundancy
between data points and these stochastic methods will work well in some average sense in the
long run. We will talk about various stochastic optimization methods and represent them
as feedback interconnections in the next lecture.

11.2 Stochastic Optimization Methods for ERM

A classical way to solve (11.1) is the gradient method, which uses the following iteration:

xk+1 = xk − α∇f(xk) (11.4)

Since f is strongly convex, the gradient method with a well-chosen constant stepsize
converges at a linear rate. To achieve accelerated convergence, we can apply Nesterov’s
method. Both the gradient method and Nesterov’s method require computing a full gradient
∇f(xk) at each step. Hence the iteration cost of these methods scale linearly with n. This
leads to a high iteration cost when the size of the training set is large.

Consequently, stochastic optimization methods become more popular for large-scale ERM
problems. Now we give a few examples.

• Stochastic gradient method: The baseline algorithm for large-scale learning tasks is
the stochastic gradient (SG) method that iterates as

xk+1 = xk − α∇fik(xk) (11.5)

where for each step k, the index ik is sampled uniformly from the set {1, 2, . . . , n}. The
per iteration cost of the SG method is independent of n. At every step k, only one (or a
small batch of) data point is sampled for gradient evaluation. The stochastic gradient
∇fik(xk) is an estimate for the true gradient ∇f(xk). The hope is that in the long run
the stochastic gradient method leads to a solution that works reasonably well in some
average sense. The SG method is the most popular optimization method for large-scale
learning tasks. However, one issue is that the SG method only converges linearly to
some tolerance of the optimum for a well-chosen constant stepsize. Just think about
that initializing the SG method from the optimal point x∗ satisfying ∇f(x∗) = 0.
Notice ∇f(x∗) = 0 does not mean ∇fi(x∗) = 0. Hence the SG method will not stay
at this optimal point even if it is initialized there. The issue is that x∗ is not a fixed

11-4



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

point for the SG method. If diminishing stepsize is used, the SG method will converge
to the optimum at a sublinear rate.

• Stochastic average gradient (SAG): Compared with the stochastic gradient ∇fik(xk),
an average gradient may be used to provide a better estimate for the true gradient.
The basic idea is that one can use a vector yk to memorize the gradient on each data
point as follows

y
(i)
k+1 :=

{
∇fi(xk) if i = ik
y
(i)
k otherwise

. (11.6)

where at each step k, a random training example ik is drawn uniformly from the set
{1, 2, . . . , n}. Hence, at each k, one still only samples one data point and updates y

(i)
k

for that data point. Since the vector y has memorized the gradient on all the data
points, averaging y should lead to a better estimate for the full gradient ∇f . SAG uses
such an average gradient and iterates as

xk+1 = xk − α

(
1

n

n∑
i=1

y
(i)
k+1

)
(11.7)

Therefore, at every step k, SAG first updates y for the average gradient evaluation
and then updated x using the average gradient. With well-chosen constant stepsize α,
SAG converges to the optimal solution of ERM. Why does SAG work? Intuitively, as
xk converges to the optimal point x∗, the change in xk becomes smaller and smaller.

Hence the average value
(

1
n

∑n
i=1 y

(i)
k+1

)
approximates the true gradient better and

better, and eventually converges to the true gradient. The detailed analysis for SAG
is quite lengthy. This motivates the development of SAGA.

• SAGA: The idea is similar to SAG, but the update for xk+1 is modified as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k +

1

n

n∑
i=1

y
(i)
k

)
(11.8)

To see the difference between SAG and SAGA, just notice SAG’s update rule (11.7)
can be rewritten as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k

n
+

1

n

n∑
i=1

y
(i)
k

)
(11.9)

Although the update rules for SAG and SAGA are similar, the convergence rate proof
for SAGA is much simpler. This partially explains why SAGA gets more popular than
SAG. The LMI tools in the controls field can be used to tell which method is easier to
analyze at the early stage of algorithm developments. We will come back to this point
later.

11-5



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

In this lecture, we focus on the above methods. In the next section, we will represent
the above methods as feedback interconnections and comment on other stochastic methods,
e.g. SVRG, Finito, and SDCA. Hopefully you will be convinced that stochastic optimization
methods for ERM are just feedback dynamical systems.

11.3 Stochastic Methods as Feedback Systems

To model stochastic optimization methods as feedback systems, we need to allow either ∆
or G to depend on the sampling index ik. This leads to the following two formulations.

1. We can use an LTI system G and a stochastic perturbation ∆ to form a feedback model
for the SG method (and SVRG-like methods).

2. We can use a dynamical jump system G and a deterministic static nonlinearity ∆ to
form a feedback model for SAGA-like methods.

11.3.1 Using stochastic ∆ to model SG

The SG method can be modeled as a feedback interconnection Fu(G,∆) shown in Figure 11.1
if we choose w = ∆(v) as a stochastic nonlinear mapping wk = ∇fik(vk) and set G to be the
following LTI system

ξk+1 = ξk − αwk
vk = ξk

To see this, we just set ξk = xk. Then the first equation in the above LTI model becomes
xk+1 = xk − αwk = xk − α∇fik(vk) = xk − α∇fik(xk). Notice in the modeling for the
gradient method xk+1 = xk − α∇f(xk), we choose ∆ as a static nonlinearity ∇f . For
the SG method, the perturbation ∆ depends on ik. Therefore, it is not surprising that
the convergence rate proofs for the gradient method and the SG method are quite similar.
Notice that the dissipation inequality approach presented in Lecture 2 can be used to handle
various types of ∆. Actually the stochastic mapping ∇fik can also be directly handled via
dissipation inequality as long as we are able to construct some informative supply rates for
such a mapping.

In later lectures, we will show that standard assumptions (smoothness, convexity, etc)

on fi can be manipulated as quadratic supply rate conditions E
[
ξk
wk

]T
X

[
ξk
wk

]
≤ M with

well-chosen X and M . Such supply rate conditions can be used to recover standard rate
bounds for the SG method via our analysis routine.

Extensions. Many other stochastic methods can also be modeled as feedback intercon-
nections of an LTI system G and a stochastic perturbation ∆. To handle stochastic gradient
with momentum, we only need to modify the matrices (A,B,C) in the LTI model of G. To
handle SVRG-like methods, we only need to modify ∆.

11-6



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

11.3.2 Jump system models for SAGA-like methods

SAGA and SAG can be rewritten as special cases of the following general jump system

ξk+1 = Aikξk +Bikwk (11.10)

vk = Cξk (11.11)

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

 (11.12)

The above general jump system model is just an interconnection of a linear jump system G
and a static nonlinearity ∆ that maps v to w as defined in (11.12). Here, ∆ depends on the
gradient information of all the data points in the training set. It seems that the computation
of wk at each k requires gradient information on all the data points. However, Bik is typically
sparse for SAGA-like methods. Therefore, Bikwk only involves gradient evaluation on one
data point, ensuring the low per-iteration cost of SAGA-like methods.

The feedback model (11.10) provides a unification for SAGA-like methods. We can
rewrite SAG, SAGA, and many other variants in this form by properly choosing (Aik , Bik , C)
for the linear jump system G. Now we show how to choose (Aik , Bik , C) for SAG and SAGA.

• Jump system model for SAG: Note that the gradient update rule for SAG is (11.6):

y
(i)
k+1 = ∇fi(xk) if i = ik and y

(i)
k+1 = y

(i)
k otherwise. Define the following stacked vector:

yk =


y
(1)
k

y
(2)
k
...

y
(k)
n

 (11.13)

At every step, the y information is almost unchanged except on the ik-th data point.
This can be summarized by the jump system iteration:

yk+1 =
(
(In − eikeTik)⊗ Ip

)
yk +

(
(eike

T
ik

)⊗ Ip
)
wk (11.14)

where wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]
, and ei is an n-dimensional vector whose i-th

entry is 1 and other entries are 0. Here the notation “⊗” denotes the Kronecker
product. Clearly, eie

T
i is a matrix whose (i, i)-th entry is 1 and all other entries are 0.

Now we can rewrite (11.9) as

xk+1 = xk −
α

n
(eTik ⊗ Ip)(wk − yk)−

α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− eik)T ⊗ Ip

)
yk −

α

n
(eTik ⊗ Ip)wk

(11.15)

11-7



ECE 586 BH Lecture 11 — 09/26/2023 Fall 2023

where e is a vector whose entries are all 1. Since vk = xk, we can combine (11.14) and
(11.15) to obtain the following jump system G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− eik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−α

n
eTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (11.16)

Since we already have w = ∆(v), we can represent SAG as Fu(G,∆) where G is
described by the above linear jump system model. Notice in this case the state of G is

ξk :=

[
yk
xk

]
.

• Jump system model for SAGA: Notice the update of yk is still captured by (11.14)

with wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]T

. Now we can rewrite (11.8) as

xk+1 = xk − α(eTik ⊗ Ip)(wk − yk)−
α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− neik)T ⊗ Ip

)
yk − α(eTik ⊗ Ip)wk

(11.17)

Since vk = xk, we can combine (11.14) and (11.17) to obtain the following jump system
G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− neik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−αeTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (11.18)

Again, we have ξk =

[
yk
xk

]
. Putting the above model for G in a feedback loop with ∆

directly realizes SAGA as a special case of (11.10).

Fixed points of the jump system models for SAG and SAGA. Suppose x∗ sat-
isfies ∇f(x∗) = 0. Then we define w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
. Next we can set

ξ∗ =
[
(w∗)T (x∗)T

]T
, and v∗ = x∗. Using the fact that

∑n
i=1∇fi(x∗) = 0, we can ver-

ify that (ξ∗, w∗, v∗) provides a fixed point for the jump system model of SAG and SAGA.

If ξk converges to ξ∗, then xk converges to x∗ and y
(i)
k converges to ∇fi(x∗). It SAGA and

SAG are initialized at such fixed points, they are going to stay there. This partially fixes
the issue of the SG method.

Generality. Many other SAGA-like methods including Finito, SDCA, and point-SAGA
can be also modeled using the above jump system model if we modify (Aik , Bik , C) properly.

What is next? In the next lecture, we will tailor the quadratic constraint approach to
provide a unified analysis for stochastic optimization.

11-8


