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Lecture 12
Control Tools for Stochastic Optimization and Supervised Learning, Part II

Lecturer: Bin Hu, Date:09/28/2023

In this lecture, we will discuss how to tailor the quadratic constraint (QC) approach as
a unified analysis tool for stochastic optimization methods.

12.1 Unified Analysis via QCs and Dissipativity

In Lecture 3, we have presented the dissipation inequality approach as a general analysis
tool for feedback systems. In today’s lecture, we will discuss how to tailor the dissipation
inequality approach for stochastic finite-sum methods.

Suppose G is an LTI system satisfying ξk+1 − ξ∗ = A(ξk − ξ∗) + B(wk − w∗). Suppose

we know S =

[
ξk − ξ∗
wk − w∗

]T
X

[
ξk − ξ∗
wk − w∗

]
≤ 0 for any w = ∆(Cξ).1 If there exists a positive

definite matrix P s.t. [
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0, (12.1)

then we have V (ξk+1) ≤ ρ2V (ξk) + S ≤ ρ2V (ξk) where V (ξk) := (ξk − ξ∗)TP (ξk − ξ∗).
This establishes the linear convergence rate bound ‖ξk − ξ∗‖ ≤

√
cond (P )ρk‖ξ0 − ξ∗‖. We

have already discussed how to perform such an analysis for the gradient method. To han-
dle stochastic finite-sum methods, we only need to make some minor modification to the
dissipation inequality approach. We first present the high-level ideas.

• Interconnection of an LTI system G and stochastic ∆: In this case, one typically
will be able to construct some expected supply rate condition ES ≤M . Then the LMI
condition (12.1) can still be used to construct a (almost sure) dissipation inequality
V (ξk+1) ≤ ρ2V (ξk) + S. How to obtain a convergence bound from such a dissipation
inequality? Since the supply rate condition holds in the average sense, we have to
take expectation of the dissipation inequality and obtain EV (ξk+1) ≤ ρ2EV (ξk) + ES.
Depending on what M is , this expected dissipation inequality can be used to prove
various things. For example, when analyzing the stochastic gradient method for smooth
strongly-convex fi, we will figure out that M is just a constant, and the dissipation
inequality can be iterated to show EV (ξk) ≤ ρ2V (ξ0) + M

1−ρ2 . This just states that the
stochastic gradient method converges linearly to a small ball whose size is controlled by
M

1−ρ2 . Notice in this case, the supply rate is not decreasing to 0 and the total internal
energy is not going to converge to 0.

1Here we assume vk = Cξk and hence w = ∆(v) = ∆(Cξ).
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• Interconnection of a jump system G and a deterministic nonlinearity ∆:
As discussed in Lecture 3, we can use the property of ∆ to construct some quadratic
supply rate conditions. Then we can analyze the feedback interconnection using the
following LMI (can you figure out why?)

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

]
−X

)
≤ 0.

Here we assume P (ik = i) = pi, and X is independent of ik. This type of supply rate
conditions arise naturally when the matrix C in G does not depend on ik and ∆ is
deterministic. The above LMI can be directly applied to SAGA-like methods.

12.1.1 Dissipation Inequality for Stochastic Gradient

Now we present a detailed analysis for the SG method under the following two assumptions:

1. f is m-strongly convex.

2. fi is L-smooth and convex for all i.

Under these two assumptions, we can show that SGD satisfies a bound in the following
form:

E‖xk − x∗‖2 ≤ ρ2k‖x0 − x∗‖2 +H (12.2)

where ρ2 = 1− 2mα +O(α2) and H = O(α). Here ρ2 quantifies the convergence speed and
H quantifies the accuracy. Therefore, for SGD, there is a fundamental trade-off between
the convergence speed and the accuracy. If one wants a very accurate solution, one has to
decrease α so that H is decreased. However, ρ2 increases as α decreases and the convergence
speed becomes slower.

As mentioned before, the supply rate condition used to prove (12.2) has a form ES ≤M .
Recall that the SG method is equivalent to a feedback system Fu(G,∆). Here ∆ is a
stochastic operator mapping v to w as wk = ∇fik(vk). In addition, G is governed by an
LTI model with A = I, B = −αI, and C = I. We emphasize that for the SG method we
have ξk+1 − ξ∗ = A(ξk − ξ∗) +Bwk and we do not shift wk to (wk −w∗). Again, we perform
our analysis in two steps. In Step 1, we construct the supply rates. In Step 2, we solve an
LMI to construct the dissipation inequality.

1. Based on wk = ∇fik(vk), we can show the following inequalities:

E
[
vk − x∗
wk

]T [
0 −LI
−LI I

] [
vk − x∗
wk

]
≤ 2

n

n∑
i=1

‖∇fi(x∗)‖2 = M (12.3)

E
[
vk − x∗
wk

]T [
2mI −I
−I 0

] [
vk − x∗
wk

]
≤ 0 (12.4)
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We skip the proofs here. Now we just set X1 =

[
0 −LI
−LI I

]
and X2 =

[
2mI −I
−I 0

]
.

Notice that it is the first supply rate that causes the convergence issue for the SG
method. Since this supply rate keeps on delivering energy to the system, the internal
energy does not decrease to 0.

2. Now we test if there exists P > 0 and non-negative scalers (λ1, λ2) such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
− λ1X1 − λ2X2 ≤ 0. (12.5)

If so, we have

E(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2E(ξk − ξ∗)TP (ξk − ξ∗)

≤λ1E
[
ξk − ξ∗
wk

]T
X1

[
ξk − ξ∗
wk

]
+ λ2E

[
ξk − ξ∗
wk

]T
X2

[
ξk − ξ∗
wk

]
≤λ1M

For simplicity, we can choose P = I. Recall for SGD we have A = I and B = −αI.
Hence (12.5) is equivalent to[

1− ρ2 −α
−α α2

]
− λ1

[
0 −L
−L 1

]
− λ2

[
2m −1
−1 0

]
≤ 0 (12.6)

Now we set the left side to be a zero matrix. We have λ1 = α2, λ2 = α − λ1L, and
ρ2 = 1− 2mλ2 = 1− 2mα + 2mLα2. Now the dissipation inequality leads to

E‖xk+1 − x∗‖2 ≤ ρ2E‖xk − x∗‖2 + λ1M

Iterating the above bound leads to

E‖xk − x∗‖2 ≤ρ2E‖xk−1 − x∗‖2 + λ1M

≤ρ4E‖xk−1 − x∗‖2 + (ρ2 + 1)λ1M

≤ρ2kE‖x0 − x∗‖2 +

(
∞∑
t=0

ρ2t

)
λ1M

=ρ2kE‖x0 − x∗‖2 +
λ1M

1− ρ2

From Step 2, we have ρ2 = 1−2mα+2mLα2 = 1−2mα+O(α2), and H = λ1M
1−ρ2 = O(α).

This leads to the desired conclusion (12.2).
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12.1.2 Dissipation Inequality for SAGA-like Methods

To show convergence behaviors, we are actually looking at the following iteration:

ξk+1 − ξ∗ = Aik(ξk − ξ∗) +Bik(wk − w∗)
vk − v∗ = C(ξk − ξ∗)

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)


(12.7)

Again, we can follow the two steps in the dissipation inequality framework.

1. First, we try to construct the following supply rate conditions for j = 1, . . . , J .[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
≤ 0. (12.8)

The supply rate constructions typically require using the matrix C and some properties
of ∆. We will cover this in more details in next section. For now, let’s look at one
example. Suppose we know f1 is L-smooth and m-strongly convex. Hence we know[

vk − v∗
∇f1(vk)−∇f1(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f1(vk)−∇f1(v∗)

]
≤ 0. (12.9)

Now notice we have vk − v∗ = C(ξk − ξ∗) and ∇f1(vk)−∇f1(w∗) = (eT1 ⊗ I)(wk −w∗)
where e1 is a vector whose first entry is 1 and all other entries are 0. Therefore, we
have [

vk − v∗
∇f1(vk)−∇f1(v∗)

]
=

[
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
Substituting the above equation into (12.9) leads to[

ξk − ξ∗
wk − w∗

]T [
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
≤ 0

Therefore, we can just chooseX1 =

[
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

]
.

Clearly X1 depends on m, L, and C. You can imagine that properties of fi and f can
all be transformed into quadratic inequalities in the form of (12.8) via similar algebraic
manipulations.
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2. Now we can perform our LMI-based analysis. If there exists a positive definite matrix
P and non-negative scalers λj s.t.

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λjXj,

then we have the expected dissipation inequality EV (ξk+1) ≤ ρ2EV (ξk) + ES(ξk, wk)
where the storage function is defined as V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) and the supply
rate S is defined as

S(ξk, wk) =
J∑
j=1

λj

[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
.

The proof for this part is based on standard Lyapunov arguments you have seen
many times. We just left and right multiply both sides of the LMI condition with[
(ξk − ξ∗)T (wk − w∗)T

]
and

[
ξk − ξ∗
wk − w∗

]
. This directly leads to the desired dissipa-

tion inequality. The non-negativity of λj guarantees S ≤ 0 and hence we have the
linear convergence bound EV (ξk) ≤ ρ2kEV (ξ0). For given (Ai, Bi, ρ) and Xj, out test-
ing condition is linear in the decision variables P and λj, and can be solved as LMIs.

Numerical solutions of the above LMIs can be obtained via using existing SDP solvers.
However, solving the LMIs analytically may require case-by-case constructions of P . The
good news is that we can use the numerical solutions of LMIs to guide our constructions of
analytical proofs.

Once we have the supply rate conditions, the constructions of dissipation inequality
can be somehow routinized by solving LMIs. Now we are ready to construct supply rates
for stochastic finite-sum methods. In many situations, the analysis of stochastic finite-sum
methods only require simple supply rates that can be obtained by manipulating the quadratic
constraints covered in the last lecture. First we will focus on SAGA-like methods. Then we
will briefly discuss SVRG which is another important finite-sum method.

12.2 Supply Rates for SAGA-Like Methods

Recall that SAGA-like methods can be represented as Fu(G,∆) where G is a jump system
and the operator ∆ maps v to w as

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

 (12.10)
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For this operator ∆, we want to construct pointwise quadratic constraints on the input/output
pair (v, w): [

vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0, (12.11)

where M is a symmetric matrix, and (w∗, v∗) are determined by the fixed points of the feed-
back interconnection Fu(G,∆). For SAGA, we know v∗ = x∗ and w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
where ∇f(x∗) = 1

n

∑n
k=1∇fi(x∗) = 0.

Again, if we know vk− v∗ = C(ξk− ξ∗), the above quadratic constraint (12.11) just gives
the following supply rate condition[

ξk − ξ∗
wk − w∗

]T([
C 0
0 I

]T
M

[
C 0
0 I

])[
ξk − ξ∗
wk − w∗

]
≤ 0.

Hence we just focus on how to obtain the quadratic constraint (12.11). Various assumptions
on fi and f can be converted into inequalities in the form of (12.11). Now let’s look at a
few concrete examples.

• Assumption 1: fi is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (12.12)

We need to make use of the following key relation:

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)

 (12.13)

which leads to ∇fi(vk)−∇fi(v∗) = (eTi ⊗ I)(wk − w∗) where ei is a vector whose i-th
entry is 1 and all other entries are 0. Therefore, we have[

vk − v∗
∇fi(vk)−∇fi(v∗)

]
=

[
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
(12.14)

Substituting the above equation into (12.12) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just chooseM =

[
I 0p×(np)
0 eTi ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 eTi ⊗ I

]
.
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• Assumption 2: f is L-smooth and m-strongly convex. In this case, we know[
vk − v∗

∇f(vk)−∇f(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f(vk)−∇f(v∗)

]
≤ 0. (12.15)

Based on (12.13), we have ∇f(vk)−∇f(v∗) = 1
n
(eT ⊗ I)(wk −w∗) where e :=

∑n
i=1 ei

is a vector whose entries are all 1. Therefore, we have[
vk − v∗

∇f(vk)−∇f(v∗)

]
=

[
I 0p×(np)
0 1

n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
Substituting the above equation into (12.15) leads to[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0.

Therefore, we can just chooseM =

[
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

]
.

• Assumption 3: fi is L-smooth but may not be convex. In this case, we know[
vk − v∗

∇fi(vk)−∇fi(v∗)

]T [−L2I 0
0 I

] [
vk − v∗

∇fi(vk)−∇fi(v∗)

]
≤ 0. (12.16)

Similarly, we can substitute (12.14) into (12.16) and get[
vk − v∗
wk − w∗

]T [
I 0p×(np)
0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)
0 eTi ⊗ I

] [
vk − v∗
wk − w∗

]
≤ 0

Therefore, we can just choose M =

[
I 0p×(np)
0 eTi ⊗ I

]T [−L2I 0
0 I

] [
I 0p×(np)
0 eTi ⊗ I

]
.

• Assumption 4: f satisfies the “one-point convexity” condition:[
vk − x∗
∇f(vk)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − x∗
∇f(vk)

]
≤ 0. (12.17)

Notice the difference between (12.17) and (12.15) is that v∗ is allowed to be any point
in (12.15). Due to the facts v∗ = x∗ and 1

n
(eT ⊗ I)w∗ = 1

n

∑n
i=1∇fi(x∗) = 0, we still

have ∇f(vk) − ∇f(v∗) = 1
n
(eT ⊗ I)(wk − w∗). Similar to before, we can just choose

M =

[
I 0p×(np)
0 1

n
eT ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
I 0p×(np)
0 1

n
eT ⊗ I

]
.
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How to use the above quadratic constraints? Depending on the assumptions on fi
and f , we can choose multiple Mj (j = 1, . . . , J) accordingly and formulate the following
LMI

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λj

[
C 0
0 I

]T
Mj

[
C 0
0 I

]
,

where the positive definite matrix P and non-negative scalers λj are decision variables. When
the assumptions on fi and f change, typically one only needs to modify Mj accordingly. The
convergence rates of SAGA and several standard finite-sum methods (SDCA, Finito, etc)
can be obtained using the above quadratic constraints and LMI formulations.

Comments on SAG. The convergence rate proof of SAG is more subtle. Quadratic
Lyapunov functions and the pointwise quadratic constraints mentioned above are not enough
for proving the convergence rate of SAG. The analysis of SAG requires the use of the Lure-
Postnikov Lyapunov function (this is similar to the proof of Nesterov’s method). For the
operator ∆, we can use similar tricks (adding and subtracting f(vk)) to construct a desired
supply rate condition which will eventually gives us the Lure-Postnikov Lyapunov function.
Actually the original convergence rate proof of SAG is based on a similar idea (although the
Lure-Postnikov Lyapunov function construction there is not based on dissipation inequality).

12.3 Supply Rates for SVRG

Finally we briefly discuss SVRG that is built upon the idea of variance reduction. Originally
we model the SG method as Fu(G,∆) where ∆ maps v to w as wk = ∇fik(vk). We directly
developed the supply rate condition for ∆ and obtain some condition in the form of ES ≤ C
where C is a positive constant. A physical interpretation is that the stochastic gradient
∇fik(vk) keeps on supplying energy into the system and hence the system is not going to
converge to its fixed point. Now we take a closer look. We can actually rewrite the SG
method as

xk+1 = xk − α(∇fik(xk)−∇fik(x∗))− α∇fik(x∗)

If we choose ξk = xk, vk = ξk, wk =

[
∇fik(vk)−∇fik(x∗)

∇fik(x∗)

]
, A = I, B =

[
−αI −αI

]
, and

C = I, we obtain a new feedback representation for the SG method. Now the input wk has
two entries. Actually it is trivial to construct a supply rate condition to couple the first entry
of wk with xk − x∗. For example, if fi is L-smooth and m-strongly convex, the following
inequality holds in an almost sure sense[

vk − x∗
∇fik(vk)−∇fik(x∗)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − x∗

∇fik(vk)−∇fik(x∗)

]
≤ 0. (12.18)
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Hence the first entry of wk is not delivering energy into the system. The troublesome term
is the second entry of wk. The term ∇fik(x∗) keeps on delivering energy into the system.

SVRG modifies the second entry of wk as ∇fik(x∗)−∇fik(x0) +∇f(x0). Now this input
depends on the initial state x0. One will be able to obtain a supply rate condition in the form
of ES ≤ L‖x0 − x∗‖2. SVRG is an epoch-based algorithm and at the beginning of each epoch
it will update x0 as the last (or average) iterate of the last epoch. Notice for each epoch, one
needs to evaluate one full gradient ∇f(x0). Hence the selection of the epoch length is going
to affect the performance of SVRG. Within one epoch, x0 is a fixed vector. As more epochs
are run, x0 gets closer to x∗. The supplied energy eventually decreases to 0 as x0 converges
to x∗. This is a rough physical explanation for the convergence mechanism of SVRG. The
dissipation inequality approach can be applied to analyze SVRG and its accelerated variant
Katyusha. We omit the details here.
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