
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 13
Imitation Learning for Control, Part I

Lecturer: Bin Hu, Date:10/03/2023

In many situations, whether reinforcement learning and/or optimal control can work or
not depends on the cost used in the problem formulation. However, the design of the cost
function itself is not a trivial thing and typically requires domain expertise. For relatively
simple control tasks such as regulations or tracking, quadratic cost can be used. For more
complicated tasks in robotics and autonomy, the cost function is typically handcrafted in a
case-by-case manner. Sometimes the objective functions are so complicated such that we do
not know how to specify them beforehand. For example, consider the design of self-driving
systems. We must carefully trade off competing objectives such as performance, safety, and
comfort level in driving. It can be difficult to come up with a precise metric for “comfortable
driving.” Therefore, how to formulate the cost function for the control design of self-driving
is unclear in the first place. This motivates the use of imitation learning. In this lecture, we
will cover how to use imitation learning for control tasks.

13.1 A Quick Overview of Imitation Learning

To start, think that human experts are good at driving and grasping. The idea of imitation
learning is to utilize expert demonstrations for such control problems where the objective
function is not obvious. In general, imitation learning can be applied to settings where
demonstrations from human experts or more general expert policies are available. Several
main techniques used in imitation learning include

1. Behavior Cloning

2. DAGGER

3. Inverse RL

4. Generative Adversarial Imitation Learning (GAIL)

Behavior Cloning. The most basic algorithm in imitation learning is the behavior cloning
method which takes in demonstrations, such as a human driver’s steering and throttle com-
mands, and attempts to fit a state-action control policy in a supervised learning fashion.
Let’s say that we are given a control design problem whose objective function is hard to
specify beforehand. We assume some demonstrations from experts are available. Specifi-
cally, we assume a sequence of state/action pairs {xk, uk}Nk=0 has been demonstrated by the

13-1



ECE 586 BH Lecture 13 — 10/03/2023 Fall 2023

expert. One way to do the control design here is to directly fit a policy on expert demonstra-
tions. The hope is that the fitted policy can mimic the behaviors of the experts and hence
perform well on the given control problem. It is natural to formulate such a fitting problem
as a supervised learning problem:

minimize
K

1

N

N∑
k=0

L(K(xk), uk) +R(K) (13.1)

where L is some loss function measuring the empirical performance of the fitted policy on
observed demonstrations, and R is a regularization term introduced to prevent overfiting.
In the above formulation, the policy is typically parameterized as a linear function or a
neural network. The resultant optimization problem is unconstrained and can be efficiently
solved by applying stochastic gradient descent (SGD) or other first-order methods. One can
also use a trajectory-based formulation, i.e. sampling several trajectories and then applying
behavior cloning to all the trajectories.

DAGGER. One issue for behavior cloning is how to sample the demonstrations. Let’s say
the expert is implicitly following some policy K∗ which is unknown to us. Then typically
one just runs the system xt+1 = f(xt, K

∗(xt), wt) to generate the trajectories. However,
when implementing the fitted controller K, the state space visited can be quite different.
This is called the distributional shift. DAGGER fixes this issue by relabeling the states
which have not been seen before. Specifically, when K is fitted, then run the system xt+1 =
f(xt, K(xt), wt) to generate some new sequence {xt, ut}. Throw away the control action here
and ask the expert to relabel the state. This gives us a new sequence of demonstrations.
Then we can augment all the demonstrations and fit K again and then iterate.

Other methods. The goal of inverse RL is to learn the cost function other than the policy
from the demonstrations. GAIL uses the idea of GANs to learn a policy that mimics the
experts. We will not discuss the details of these methods in this course.

Prior in imitation learning for control. We can see that the original form of imitation
learning is an unconstrained optimization problem. How to incorporate control-theoretic
prior into the imitation learning process is a key issue, and many researchers are still studying
this. In the next section, we will illustrate this via reviewing one recent result on imitation
learning for model predictive control.

13.2 Imitation Learning for Model Predictive Control

In this section, we briefly discuss the idea for the main reference of this lecture (see the course
website for more information). For simplicity, we mainly follow the video presentation of
the main reference given by Kwangjun Ahn (who is the first author). Some simplifications

13-2



ECE 586 BH Lecture 13 — 10/03/2023 Fall 2023

have been made to convey the idea. The discussion on the robust MPC scheme used in the
actual paper is skipped.

Suppose we are interested in solving the following constrained control problem:

xt+1 = Axt +But (13.2)

where xt ∈ X = [−a, a]nx , and ut ∈ U = [−b, b]nu . Consider a quadratic stage cost xT
t Qxt +

uT
t Rut with Q ≥ 0 and R > 0. If the problem is unconstrained (i.e. a = +∞ and b =

+∞), then the optimal solution to the infinite-horizon problem is provided by the LQR
policy ut = πlqr(xt) = −(R + BTPB)−1BTPAxt where P is the stabilizing solution to the
algebraic Riccati equation P = ATPA − ATPB(R + BTPB)−1BTPA + Q. However, if the
problem is constrained (i.e. a and b are finite), the problem becomes more difficult. One
popular approach is the model predictive control (MPC) approach. At every step t, the
MPC controller generates the control action via solving a real-time optimization problem
and apply u∗

0(x):

MPC(x) = min
u0,u1,··· ,uN−1

N−1∑
t=0

xT
t Qxt + uT

t Rut + xT
NQfxN

s.t. xt+1 = Axt +But, x0 = x

xt ∈ X , ut ∈ U ∀t

At every time, one solves a finite-horizon planning problem with an N -step planning win-
dow. Instead of applying all the control actions (u∗

0, u
∗
1, · · · , u∗

N−1), MPC only applies u∗
0

at every step and then replan! Therefore, MPC is a state-feedback controller which satis-
fies πMPC(x) = u∗

0(x). The closed-loop feedback mechanism is just more robust than the
open-loop strategies. MPC is very powerful and has been widely applied in industry. Due to
the feedback nature, MPC has some nice stability/robustness properties and can guarantee
safety at the same time. However, solving an N -step planning problem at every step can
be costly for problems with high dimensions and long planning windows. One possible fix
is to use the explicit MPC approach which precomputes u∗

0(x) offline for all x and directly
implement the resultant piecewise affine controller. However, although u∗

0(x) is a piecewise
affine function of x, it is typically very complicated and hard to compute/store. The piece
number roughly scales with 2N+d, which is a huge number for large (N, d).

Now it seems natural to apply imitation learning to learn a neural network policy which
mimics the behaviors of MPC. Instead of solving u∗

0(x) exactly, we sample some pairs of
(x, u∗

0(x)) and the fit a neural network policy on the training set (expert demonstrations).
However, the behavior cloning approach may not work that well due to the distribution
shift issue. It can potentially lead to a destabilizing controller. The main reference used
the forward training method to address this issue. The forward training method generates
a time-varying policy πt as follows. First, one just samples (x0, u

∗
0(x0)) to fix π0. Then, one

sample x0 and run π0 to generate x1. After applying MPC to x1, then just fit π1 on all
the data (x1, u

∗
0(x1). Similarly, one can sample the initial states again and apply (π0, π1)

13-3



ECE 586 BH Lecture 13 — 10/03/2023 Fall 2023

to generate x2, and then fit π2 on (x2, u
∗
0(x2)). This approach can be somehow thought

as the “time-varying” version of DAGGER. Now the policy is completely trained using its
own trajectory, and there is no distribution shift issue. However, this approach learns time-
varying πt, and there is a scalability issue here as the number of stages increases. The
authors of the main reference address this via leveraging the theoretical properties of MPC.
Specifically, it is known that there exists a positive invariant region around the equilibrium
point such that u∗

0(x) becomes the LQR controller. Once the states are stabilized to that
region, there is nothing left to learn. Under mild assumptions, MPC is exponentially stable
and drives states to that region exponentially fast. Therefore, one can estimate the steps
needed to reach that region, and then applying the forward training method for that many
steps should be sufficient. Basically, one only runs the forward training until all the sampled
states at τ are in the positive invariant set around the equilibrium point. Some sample
complexity theory has also been provided to support this approach.

The above approach provides a nice example showing that applying imitation learning
for control requires leveraging control-theoretic properties of existing control approaches.

13-4


