
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 15
A Jump System Perspective on Temporal Difference Learning, Part I

Lecturer: Bin Hu, Date:10/10/2023

In the previous lectures, we have shown that jump system theory can be used to provide
a general analysis for stochastic optimization methods. Now we will extend this idea to
address the complexity analysis of reinforcement learning (RL) algorithms. Specifically, we
will consider the policy evaluation problem in RL, and study how jump system theory can
be used to analyze the famous temporal difference (TD) learning algorithm.

15.1 Background: Policy Evaluation in RL

RL refers to a collection of techniques for solving Markov decision processes (MDPs). Here we
briefly review some background materials for MDPs and policy evaluation. A MDP is defined
by a tuple ⟨S,A, P,R, γ⟩ where S is the state space, A is the action space, P is the transition
kernel, R is the reward, and γ is the discount factor. The goal is to choose the action sequence
{at} to maximize the total accumulated rewards V (s0) = E

[∑∞
k=0 γ

kR(sk, ak)
∣∣s0].

The action at is typically determined using a feedback function of st. This is a natural
consequence of dynamic programming and the concept of feedback is very important for
managing uncertainty. The feedback law mapping st to at is called “policy” (in the rein-
forcement learning literature) or “controller” (in some controls literature). A policy can be
deterministic (i.e. st = π(at) where π is a fixed nonlinear function) or stochastic (i.e. it
maps each state to a probability distribution over the action space A). Then the goal can be
equivalently formulated as finding an optimal policy that maximizes the total accumulated
rewards, i.e.

π∗ = argmax
π

E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0

]
.

If both S andA are finite, then the policy parameterization is straightforward. Any determin-
istic policy can be actually represented by a vector. For simplicity, consider S = {1, 2, . . . , n}
and A = {1, 2, . . . , L}. Then a deterministic policy π can be specified as as vector

π(1)
π(2)
...

π(n)


where π(i) ∈ A. Clearly the above vector is in Rn. If we further consider a stochastic policy,
then each π(i) is a probability distribution over A and hence is a vector in RL. Therefore,
we have π ∈ RnL for any stochastic policy.

15-1



ECE 586 BH Lecture 15 — 10/10/2023 Fall 2023

To find the best policy, at least we need some tools to assess the performance of a given
policy. This task is called policy evaluation. The goal here is to calculate the value function
for any given policy.

V π(s0) = E

[
∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0

]
.

For simplicity, let’s first consider the value evaluation of a deterministic policy. If both S
and A are finite, then the policy π can be represented as a vector. Then the value function
becomes

V π(s) = E

[
∞∑
k=0

γkR(sk, π(sk))
∣∣s0 = s

]
.

Now we can apply the law of total probability to show:

V π(s) = ER(s0, π(s0)) + E

[
∞∑
k=1

γkR(sk, π(sk))
∣∣s0 = s

]

= ER(s, π(s)) +
∑
s′∈S

(
E[

∞∑
k=1

γkR(sk, π(sk))
∣∣s1 = s′]

)
P (s1 = s′

∣∣s0 = s)

When π is fixed, the state {sk} becomes a Markov chain. We have P (s1 = s′
∣∣s0 = s) =

P (s1 = s′
∣∣s0 = s, a0 = π(s)) = P

π(s)
ss′ . Notice E

[∑∞
k=1 γ

kR(sk, π(sk))
∣∣s1 = s′

]
= γV π(s′). If

we denote R̄π(s) := ER(s, π(s)), then the equation on V π can be rewritten as

V π(s) = R̄π(s) + γ
∑
s′∈S

V π(s′)P
π(s)
ss′ (15.1)

which is the so-called Bellman equation. Recall S = {1, 2, . . . , n}. We can actually rewrite
the above Bellman equation in the following matrix form:V

π(1)
...

V π(n)

 =

R̄
π(1)
...

R̄π(n)

+ γ

P
π(1)
11 · · · P

π(1)
1n

...
. . .

...

P
π(n)
n1 · · · P

π(n)
nn


V

π(1)
...

V π(n)


If we use the following vector notation:

V π =


V π(1)
V π(2)

...
V π(n)

 , R̄π =


R̄π(1)
R̄π(2)

...
R̄π(n)

 , P π =

P
π(1)
11 · · · P

π(1)
1n

...
. . .

...

P
π(n)
n1 · · · P

π(n)
nn


we can rewrite the Bellman equation as

V π = R̄π + γP πV π. (15.2)

15-2



ECE 586 BH Lecture 15 — 10/10/2023 Fall 2023

Therefore, the policy evaluation becomes an equation solving problem. Notice P π is actually
the transition matrix for the Markov chain {sk}. Clearly, this matrix is right stochastic and
the spectral radius is 1. Therefore, I − γP π is nonsingular for any 0 < γ < 1, and the
Bellman equation admits a unique solution

V π = (I − γP π)−1R̄π

If we want to avoid matrix inversion, we can use an iterative scheme:

V π
k+1 = R̄π + γP πV π

k

which is equivalent to a linear time-invariant system:

V π
k+1 − V π = γP π(V π

k − V π)

Since the spectral radius of γP π is γ, we immediately know the above system converges to
V π at a linear rate γ. When a stochastic policy is used, the Bellman equation still holds.
We only need to slightly modify the definitions of R̄π and P π. For example, now we have

R̄π(s) = E
[
R(s, a)

∣∣a ∼ π(|̇s)
]
. I will let you figure out how to modify P π. In general, when

a fixed stochastic policy is used, the state {sk} still becomes a Markov chain and P π is the
associated transition matrix. Then V π can still be solved via the Bellman equation.

15.2 Model-Free Setting: TD Learning

The above discussion assumes knowing P π. How to solve the Bellman equation when we
do not know P π? Here is the basic idea of TD learning. Suppose we are using an iterative
method and estimate the value function as V π

k at step k. We sample the trajectory of the
underlying Markov chain as {sk}. Based on the Bellman equation, V π(sk) can be estimated
in two ways: either V π

k (sk) or r(sk, π(sk)) + γV π
k (sk+1) (this is called TD target). One

reasonable way to do things is to minimize the difference of these two things: (V π
k (sk) −

r(sk, π(sk))− γV π
k (sk+1))

2. How to make this difference small? Averaging!

V π
k+1(sk) = (1− ε)V π

k (sk) + ε(r(sk, π(sk)) + γV π
k (sk+1))

= V π
k (sk) + ε (r(sk, π(sk)) + γV π

k (sk+1)− V π
k (sk))

Denote δk = r(sk, π(sk)) + γV π
k (sk+1)− V π

k (sk). The term δk is the so-called TD error. The
above algorithm is called TD(0)1. Usually ε is small, and this means that we do not want
to make too much change for a given random sample point.

Now we switch our focus to the function approximation case. Suppose n is too large and
we do not want to learn an n-dimensional vector for V π. Instead, we estimate V π(s) ≈ θTϕ(s)
where ϕ is the feature vector. Here, after we get a sample trajectory, what shall we do? We

1An extension which interpolates TD(0) and Monte Carlo method is TD(λ), which relies on the use of
the eligibility traces. We skip the details of such extensions.

15-3



ECE 586 BH Lecture 15 — 10/10/2023 Fall 2023

can try to minimize 1
2
∥θTϕ(sk) − r(sk, π(sk)) − γθTk ϕ(sk+1)∥2. However, we do not want to

completely solve this problem since we do not want to trust one sample point too much.
Instead, we can perform one step gradient descent as

θk+1 = θk + ε
(
r(sk, π(sk)) + γθTk ϕ(sk+1)− θTk ϕ(sk)

)
ϕ(sk)

Again, we have TD error δk = r(sk, π(sk)) + γθTk ϕ(sk+1) − θTk ϕ(sk). Then we can ask what
types of theoretical guarantees can be proved. Notice TD(0) can be modeled as a linear
stochastic approximation scheme θk+1 = θk + ε(Aikθk + bik) where ik is the augmented
vector of (sk+1, sk). As ε → 0, we will have an ODE to model its asymptotic dynamics:
θ̇ = Āθ + b̄ where Ā and b̄ are some averaged quantities. Based on the so-called ODE
approach, the asymptotic convergence of TD(0) with diminishing step size can be guaranteed
by the stability of this ODE and several extra technical conditions. More recently, the finite
sample bounds have also been developed. We will discuss how to leverage the jump system
theory to derive such finite-time analysis. Before moving to cover such control-theoretic
analysis, we first make a few remarks.

Off policy vs. on policy. The above method is on policy since the data has to be sampled
using the policy π. Sometimes we do not use to directly use π to gather data since that may
be dangerous. Then we will use off-policy methods. In off-policy TD learning, the data is
sampled from a behavior policy µ. Then importance sampling trick is used to evaluate the
value function of the target policy π using the data generated by the behavior policy µ. What
is importance sampling? Originally important sampling is used in rare event simulations to
sample “important but rare” events. Just imagine X ∼ N (0, 1) and one wants to estimate
P (X > 10) = E1X>10 using Monte Carlo simulations. Since it is extremely unlikely to get
a sample with X > 10, the Monte Carlo simulation may just return 0. Suppose f(x) is the
density function for N (0, 1) and g(x) is the density function for N (10, 1). Then importance
sampling uses the following reformulation:

E1X>10 =

∫ ∞

−∞
1X>10f(x)dx =

∫ ∞

−∞
1X>10

f(x)

g(x)
g(x)dx

Now we can sample X from N (10, 1) and average the quantity 1X>10
f(x)
g(x)

. Clearly by doing
this, we see the event X > 10 much more often, and this is exactly the idea of importance
sampling. Here the ratio of the two densities is called importance sampling ratio. Off-policy
TD learning uses a similar idea, and requires using the importance sampling ratio between
π and µ. To study some details of off-policy TD learning, see Sections 2-4 in [3].

Online vs. off-line: Least square methods. TD(0) is an online method. When a
new data point sk is observed, the weight θk is updated and then the data point sk is
completely thrown away after this update. How to make more efficient use of data? If
all the data are available, then we can use off-line methods. For example, when the lin-
ear approximation is used, we can apply the least square method to fit θ directly. If we

15-4



ECE 586 BH Lecture 15 — 10/10/2023 Fall 2023

look at the recursive formula for TD(0), eventually the method will converge if the term(
r(sk, π(sk)) + γθTk ϕ(sk+1)− θTk ϕ(sk)

)
ϕ(sk) is roughly 0. Therefore, we want to choose θ to

have

ϕ(sk) (ϕ(sk)− γϕ(sk+1)) θ ≈ ϕ(sk)r(sk, π(rk)), ∀k

This becomes a least square problem. We can just choose A =
∑

k ϕ(sk) (ϕ(sk)− γϕ(sk+1))
and b =

∑
k ϕ(sk)r(sk, π(rk)). Then we fit θ as θ = A−1b. When A is not invertible, we can

use pseudo inverse. We can add eligibility trace into the algorithm. Details are omitted.

Summary of the key idea in TD learning. The basic idea of TD learning is to fit the
value function by enforcing the left and right sides of the Bellman equation to be roughly
equal to each other on the observed data. A similar idea can be used to find the optimal Q
function. One can try to fit the optimal value function by enforcing the left and right sides
of the optimal Bellman equation to be roughly equal to each other on the observed data.
This is the idea behind value-based reinforcement learning methods.

15.3 A Jump System Perspective on TD Learning

As discussed previously, TD(0) with linear function approximation can be rewritten as θk+1 =
θk + ε(Aikθk + bik). Suppose θπ is the solution to the projected Bellman equation2 for the
given policy π. How can we obtain a finite time bound for the mean square TD estimation
error E∥θk − θπ∥2? Obtaining such a bound under the IID assumption on {ik} is relatively
straightforward. However, for TD learning, {ik} is typically Markov. Obtaining a finite
sample bound under such a Markov assumption is more technical. There are several different
techniques that can be used to tackle this difficulty. We will present one argument based on
the jump system theory. Specifically, we can rewrite the TD scheme as

θk+1 − θπ = θk − θπ + εAik(θk − θπ) + ε(Aikθπ + bik),

which is equivalent to

θk+1 − θπ = (I + εAik)(θk − θπ) + ε(Aikθπ + bik). (15.3)

Denote ξk = θk − θπ, Gik = ε(Aikθπ + bik), and Hik = I + εAik . The above scheme just
becomes a jump system:

ξk+1 = Hikξk +Gikuk (15.4)

where uk = 1 for all k. Notice that the jump system theory established in the control field
can be directly applied to obtain closed-form formula for E∥ξk∥2 under the assumption that
{ik} is either IID or Markov [1, Proposition 3.35]. As a matter of fact, the jump system
theory can actually handle general forms of {Hi, Gi}. Such an analysis for TD learning was
originally developed in [2]. We will present the detailed analysis in the next lecture.

2The projected Bellman equation and the equation
∑n

i=1 p
∞
i bi = 0 are actually equivalent, i.e. we have∑

i p
∞
i (Aiθπ + bi) = 0.

15-5



Bibliography

[1] O. Costa, M. Fragoso, and R. Marques. Discrete-time Markov jump linear systems.
Springer Science & Business Media, 2006.

[2] B. Hu and U. Syed. Characterizing the exact behaviors of temporal difference learning
algorithms using Markov jump linear system theory. In Advances in Neural Information
Processing Systems, pages 8479–8490, 2019.

[3] R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research,
17(1):2603–2631, 2016.

6


