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In this lecture, we will show how the jump system theory can be used to provide finite-
time analysis for TD(0) with linear function approximation. We consider V π(s) ≈ θTϕ(s)
where ϕ is the feature vector. Recall that TD(0) iterates as

θk+1 = θk + ε
(
r(sk, π(sk)) + γθTk ϕ(sk+1)− θTk ϕ(sk)

)
ϕ(sk)

where {sk} is the underlying Markov chain under the policy π. As discussed in the last
lecture, we can rewrite TD(0) as the following linear stochastic approximation scheme

θk+1 = θk + ε(Aikθk + bik), (16.1)

where ik is the augmented vector of (sk+1, sk). If {sk} forms a Markov chain, then {ik}
also forms a Markov chain. Suppose θπ is the solution to the projected Bellman equation1

for the given policy π. How can we obtain a finite time bound for the mean square TD
estimation error E∥θk − θπ∥2? Obtaining such a bound under the IID assumption on {ik} is
relatively straightforward. However, for TD learning, {ik} is a Markov chain. Obtaining a
finite sample bound under such a Markov assumption is not easy. There are several different
techniques that can be used to tackle this difficulty. We will present one argument based
on the Markov jump linear system (MJLS) theory from the control field. We will follow the
outline below:

• Review of linear time-invariant (LTI) system theory

• Review of MJLS theory

• TD learning as MJLS

16.1 Review of LTI Systems

A linear time-invariant (LTI) system is typically governed by the following state-space model

xk+1 = Hxk + Guk, (16.2)

where xk ∈ Rnx , uk ∈ Rnu , H ∈ Rnx×nx , and G ∈ Rnx×nu . The LTI system theory has been
well documented in standard control textbooks [3, 1]. Next, we review several useful facts.

1The projected Bellman equation and the equation
∑n

i=1 p
∞
i bi = 0 are actually equivalent, i.e. we have∑

i p
∞
i (Aiθπ + bi) = 0 where p∞i = limk→∞ P (sk = i).

16-1



ECE 586 BH Lecture 16 — 10/12/2023 Fall 2023

Closed-form formulas for xk. Given an initial condition x0 and an input sequence, the
state xk yields the following closed-form expression

xk = (H)kx0 +
k−1∑
t=0

(H)k−1−tGut, (16.3)

where (H)k stands for the k-th power of the matrix H.

Necessary and sufficient stability condition: It is well-known that the LTI system
(16.2) is stable if and only ifH is Schur stable. WhenH is Schur stable, we know (H)kx0 → 0
for any arbitrary x0. When σ(H) ≥ 1, there always exists x0 such that (H)kx0 does not
converge to 0. When σ(H) > 1, there even exists x0 such that (H)kx0 → ∞ [3, Section 7.2].

Exact limit for xk. Suppose the system is stable, i.e. σ(H) < 1. If H is Schur stable and
uk converges to a limit u∞, then xk has an exact limit (i.e. limk→∞ xk exists), and we must
have x∞ = limk→∞ xk = (I −H)−1Gu∞. If uk = u ∀k and σ(H) < 1, then the closed-form
expression for xk can be simplified as

xk = x∞ + (H)k(x0 − x∞), (16.4)

which is a sum of a constant steady state term x∞ and a matrix power term that decays at a
linear rate specified by σ(H). If uk converges to u∞ at a linear rate ρ̃, then xk will converge
to its limit point at a linear rate specified by max{σ(H) + ε, ρ̃}.

16.2 Review of MJLS

In the control field, the behaviors of MJLS have been extensively studied. A standard MJLS
is governed by the following state-space model:

ξk+1 = Hikξk +Gikuk (16.5)

where ik ∈ {1, 2, · · · , N} is the so-called jump parameter. For MJLS, {ik} is assumed to be
a Markov chain. For every k, we have Hik ∈ {H1, H2, · · · , HN} and Gik ∈ {G1, G2, · · · , GN}.
A key result from the classic MJLS theory states that E∥ξk∥2 can be obtained as an output
of a special linear time-invariant (LTI) system [2, Proposition 3.35]. Now we briefly review
this result here.

Roughly speaking, the analysis is built upon the fact that some augmented versions of
the mean and the covariance matrix of {ξk} for the MJLS model (16.5) actually follow the
dynamics of a deterministic LTI model in the form of (16.2) [2, Chapter 3]. Let us denote
the transition probabilities for the Markov chain {ik} as pij := P(ik+1 = j|ik = i) and specify
the transition matrix P by setting its (i, j)-th entry to be pij. Obviously, we have pij ≥ 0
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and
∑n

j=1 pij = 1 for all i. Next, the indicator function for the event ik = i is denoted as
1{ik=i}. Now we define the following key quantities:

qik = E
(
ξk1{ik=i}

)
, Qi

k = E
(
ξk(ξk)

T1{ik=i}
)
.

Suppose uk = 1 ∀k. Based on [2, Proposition 3.35], we must have

qjk+1 =
n∑

i=1

pij(Hiq
i
k +Gip

i
k), (16.6)

Qj
k+1 =

n∑
i=1

pij
(
HiQ

i
kH

T
i + 2 sym(Hiq

i
kG

T
i ) + pikGiG

T
i

)
, (16.7)

where pik := P(ik = i). To see why the above equations hold, we have the following argu-
ments2

qjk+1 =
n∑

i=1

E
(
(Hikξk +Gikuk)1{ik=i}1{ik+1=j}

)
=

n∑
i=1

(
HiE(ξk1{zk=i}P(ik+1 = j|Fk)) +GiE(1{ik=i}P(ik+1 = j|Fk))

)
=

n∑
i=1

pij(Hiq
i
k +Gip

i
k)

(The proof for the formula of Qj
k+1 is very similar. Please derive it by yourself!)

If we further augment qik and Qi
k as

qk =

q
1
k
...
qnk

 , Qk =
[
Q1

k Q2
k . . . Qn

k

]
,

then it is straightforward to rewrite (16.6) (16.7) as the following LTI system[
qk+1

vec(Qk+1)

]
=

[
H11 0
H21 H22

] [
qk

vec(Qk)

]
+

[
uk

vk

]
, (16.8)

2We use the fact that E(Y ) = E(E(Y |F)) if Y is F-measurable.
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where H11, H21, H22, uk, and vk are defined as

H11 =

p11H1 . . . pn1Hn
...

. . .
...

p1nH1 . . . pnnHn

 ,H22 =

p11H1 ⊗H1 . . . pn1Hn ⊗Hn
...

. . .
...

p1nH1 ⊗H1 . . . pnnHn ⊗Hn

 ,

H21 =

p11(H1 ⊗G1 +G1 ⊗H1) . . . pn1(Hn ⊗Gn +Gn ⊗Hn),
...

. . .
...

p1n(H1 ⊗G1 +G1 ⊗H1) . . . pnn(Hn ⊗Gn +Gn ⊗Hn)

 ,

uk =

p11G1 . . . pn1Gn
...

. . .
...

p1nG1 . . . pnnGn


p

1
kInξ

...
pnkInξ

 ,

vk =

p11G1 ⊗G1 . . . pn1Gn ⊗Gn
...

. . .
...

p1nG1 ⊗G1 . . . pnnGn ⊗Gn


p

1
kIn2

ξ

...
pnkIn2

ξ

 .

(16.9)

Therefore, qk and vec(Qk) follow the LTI dynamics (16.8) and can be analyzed using the
LTI theory reviewed in the last section.

Exercise problem. Can you apply the above LTI system model to write out an ana-
lytical formula for E∥ξk∥2?

16.3 TD Learning as MJLS

Now we can treat the TD scheme as a MJLS:

θk+1 − θπ = θk − θπ + εAik(θk − θπ) + ε(Aikθπ + bik),

which is equivalent to

θk+1 − θπ = (I + εAik)(θk − θπ) + ε(Aikθπ + bik). (16.10)

Denote ξk = θk − θπ, Gik = ε(Aikθπ + bik), and Hik = I + εAik . The above scheme just
becomes a jump system. Then we can easily obtain an analytical formula for the mean
square TD estimation error E∥θk − θπ∥2 and draw various insights on how the learning rate
will affect the system behavior. This is exactly the idea used in [4]. If you are interested,
please read [4] for a detailed treatment.
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