
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 4
Unifying the Analysis in Control and Optimization via SDPs, Part II

Lecturer: Bin Hu, Date:08/31/2023

The gradient method is relatively easy to analyze since they only require quadratic Lya-
punov functions and pointwise quadratic constraints. Specifically, we only need to construct
a dissipation inequality in the form of V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) (or an expected version)
with V being quadratic and S being smaller or equal to 0 for all k. Then we immediately
have V (ξk+1) ≤ ρ2V (ξk). As a matter of fact, one can prove the linear convergence of the
gradient method by only exploiting the one-point convexity of f . The convexity of f is not
really needed. That is not the case for Nesterov’s method.

Nesterov’s method is more difficult to analyze. One reason is that more advanced Lya-
punov functions and more sophisticated supply rates are required to exploit the properties of
f . Just imagine that we still use the sector bound condition to analyze Nesterov’s method.

Hence we can set X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
and have S(ξk, wk) ≤ 0.

If we use this X to formulate the LMI, we will see that the testing condition is not feasible
for the rate we want to test. Therefore, the sector bound condition is too conservative for
Nesterov’s method. Notice the key idea behind the dissipation inequality framework is to
approximate wk = ∇f(vk) using some supply rate conditions. For Nesterov’s method, we
will need some supply rate conditions that can exploit the convexity better and give us Lya-
punov functions in more general forms. In this lecture, we will talk about the Lure-Postnikov
Lyapunov function approach for Nesterov’s method.

4.1 Iteration Complexity of Nesterov’s Method

The convergence rate ρ naturally leads to an iteration number T guaranteeing the algorithm
to achieve the so-called ε-optimality, i.e. ‖xT − x∗‖2 ≤ ε or f(xT )− f(x∗) ≤ ε.

Based on the rate bound cρk, if we choose T = log
(
c
ε

)
/(− log ρ) = O

(
log( c

ε
)/(1− ρ)

)
,

we guarantee the ε-optimal solution. The number T just gives the “ε-optimal iteration
complexity”. It is straightforward to verify that the convergence rate bound that we obtained
for the gradient method can be converted to an iteration complexity T = O

(
L
m

log(1
ε
)
)
.

Nesterov’s method improves the iteration complexity fromO
(
L
m

log(1
ε
)
)

toO
(√

L
m

log(1
ε
)
)

.

This improvement is significant. Just consider L
m

= 10000. Then
√

L
m

= 100. Hence Nes-

terov’s method is roughly 100 times faster than the gradient method in this case. The
convergence rate corresponding to this iteration complexity is ρ2 = 1 −

√
m
L

. When f is

L-smooth and m-strongly convex, Nesterov’s method with α = 1
L

and β =
√
L−
√
m√

L+
√
m

sat-
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isfies a convergence bound f(xk) − f(x∗) ≤ c
(
1−

√
m
L

)k
where c is a constant. If we

only use X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
to form the supply rate function,

the resultant LMI is not feasible with ρ2 = 1 −
√

m
L

. Now we will show how to analyze
Nesterov’s method by modifying the dissipation inequality and constructing the so-called
Lure-Postnikov Lyapunov function.

4.2 Lure-Postnikov Lyapunov Functions

Although quadratic Lyapunov functions are not enough for proving the accelerated rate
of Nesterov’s method, we can use a Lyapunov function in the form of (ξk − ξ∗)TP (ξk −
ξ∗) + f(xk) − f(x∗) to fix the issue. This type of Lyapunov functions are exactly the so-
called “Lure-Postnikov Lyapunov functions” in the controls literature. The quadratic term
(ξk− ξ∗)TP (ξk− ξ∗) can be thought as a kinetic energy and the function term f(xk)− f(x∗)
can be interpreted as a potential energy. For Nesterov’s method, one can show that the total
energy (or Hamiltonian) decreases at every step although the kinetic energy itself may not
decrease in that way.

How to construct a Lure-Postnikov Lyapunov function? Apply the dissipation in-
equality approach with a new supply rate! Recall that Nesterov’s method can be written
as

ξk+1 = Aξk +Buk

vk = Cξk

uk = ∇f(vk)

(4.1)

where A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, and C =

[
(1 + β)I −βI

]
. The convergence

rate proof of Nesterov’s method can be done by applying the dissipation inequality routine
presented in past lectures.

1. Replace the nonlinear equation uk = ∇f(vk) in (4.1) by some quadratic inequality in
the following form:[

ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

= ρ2(f(xk)− f(xk+1)) + (1− ρ2)(f(x∗)− f(xk+1))

The key issue is how to figure out X.

2. Test if there exists P ≥ 0 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0. (4.2)
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If so, then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤
[
ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
which is exactly the so-called dissipation inequality Vk+1 − ρ2Vk ≤ S(ξk, uk) if we

define Vk = (ξk − ξ∗)TP (ξk − ξ∗) and S(ξk, uk) =

[
ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
. Clearly

Vk ≥ 0 due to the fact P ≥ 0. In Homework 1, you will figure out that (4.2) holds

with (ρ2, α, β) = (1−
√

m
L
, 1
L
,
√
L−
√
m√

L+
√
m

) if P is chosen properly.

3. Now directly apply the supply rate condition to conclude Vk+1 + f(xk+1) − f(x∗) ≤
ρ2 (Vk + f(xk)− f(x∗)). This rate result can be converted into an ε-optimal iteration

complexity result O(
√

L
m

log 1
ε
).

How to construct the supply rate condition for Nesterov’s method? As mentioned
previously, if we can construct a symmetric matrix X such that the following supply rate
condition holds

S(ξk, wk) =

[
ξk − ξ∗
wk

]T
X

[
ξk − ξ∗
wk

]
≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

= ρ2(f(xk)− f(xk+1)) + (1− ρ2)(f(x∗)− f(xk+1)),

(4.3)

then the dissipation inequality V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) will directly leads to the desired
convergence bound V (ξk+1) + f(xk+1)− f(x∗) ≤ ρ2(V (ξk) + f(xk)− f(x∗)). The key issue is
how to figure out X. If we can find X1 and X2 such that[

ξk − ξ∗
wk

]T
X1

[
ξk − ξ∗
wk

]
≤ f(xk)− f(xk+1) (4.4)[

ξk − ξ∗
wk

]T
X2

[
ξk − ξ∗
wk

]
≤ f(x∗)− f(xk+1), (4.5)

then we can set X = ρ2X1 + (1− ρ2)X2 to obtain the condition (4.3). Now let’s look at how
to obtain X1 and X2.

For illustrative purposes, we focus on the construction of X1. The construction of X2

will be similar. The condition (4.4) involves f(xk+1) and f(xk). Hence it is reasonable to
think that its construction requires some inequalities involving the function value f . Recall
that L-smoothness and m-strong convexity give the following two inequalities:

f(x) ≤ f(y) +∇f(y)T(x− y) +
L

2
‖x− y‖2 (4.6)

f(x) ≥ f(y) +∇f(y)T(x− y) +
m

2
‖x− y‖2 (4.7)
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How can we choose (x, y) in the above inequalities to obtain (4.4). One idea is to set
(x, y)→ (xk+1, xk) in (4.6). However, ∇f(y) becomes ∇f(xk) and this is not wk! The only
term involving the gradient information on the left side of (4.4) is wk which is the gradient
evaluated on vk! Therefore, when applying (4.6) and (4.7) to construct (4.4), one has to set
y to be vk! By doing this, we can show

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(xk − vk) +

m

2
‖xk − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T1

2

 β2m −β2m −β
−β2m β2m β
−β β α(2− Lα)

⊗ Ip
 xk − x∗

xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)

T(xk − vk) + m
2
‖xk − vk‖2 +∇f(vk)

T(vk −
xk+1) − L

2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. This gives us the

matrix X1. We can see that the key trick is just subtracting and adding f(vk).
Similarly, X2 can be derived as

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(x∗ − vk) +

m

2
‖x∗ − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)


You will be asked to figure out the details of X2 in the homework.

4.3 Sublinear Rate Analysis

So far we have talked about how to obtain a linear convergence rate using the dissipation
inequality approach. What if the convergence rate is sublinear, e.g. O(1/k)? Recall a
differentiable function f is convex if the following inequality holds for all x, y

f(x) ≥ f(y) +∇f(y)T(x− y)

You can think convex functions as “0-strongly convex functions,” although the m-strong
convexity typically implicitly assume m > 0. What performance guarantees can we say about
the optimization of such functions? For the gradient method, we can show f(xk)− f(x∗) =
O(1/k). For Nesterov’s accelerated method, we can show f(xk)−f(x∗) = O(1/k2). We don’t
have linear convergence anymore. The convergence rate O(1/k) and O(1/k2) are significantly
slower than the linear convergence rate O(ρ−k), and categorized as “sublinear convergence
rates.” Now we discuss how to modify the dissipation inequality approach to show such
sublinear convergence rates.
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4.3.1 The O(1/k) rate of Gradient Descent Method

The dissipation inequality has the following form

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, uk)

where V is non-negative. Depending on the properties of S, the dissipation inequality reaches
different conclusions.

1. If S(ξk, uk) ≤ 0, then we have V (ξk+1)− ρ2V (ξk) ≤ 0. This is a linear convergence in
V . We used this argument to show the linear convergence of the gradient method.

2. If S(ξk, uk) ≤ −(f(xk+1) − f(x∗)) + ρ2(f(xk) − f(x∗)), we have V (ξk+1) + f(xk+1) −
f(x∗) ≤ ρ2(V (ξk) + f(xk) − f(x∗)). This is also linear convergence. We used this
argument to show the linear convergence of Nesterov’s method.

3. How about having the condition S(ξk, uk) ≤ f(x∗) − f(xk) and ρ2 = 1? Then the
dissipation inequality leads to the inequality V (ξk+1) − V (ξk) + f(xk) − f(x∗) ≤ 0.
Summing this inequality leads to

k∑
t=0

(f(xt)− f(x∗)) ≤ V (ξ0)− V (ξk+1) ≤ V (ξ0)

The last step relies on the fact V ≥ 0. If we know f(xt) ≤ f(xt−1), then the left side
of the above inequality can be lower bounded by (k+ 1)(f(xk)− f(x∗)). Therefore, we
eventually have

f(xk)− f(x∗) ≤ V (ξ0)

k + 1
(4.8)

This is a sublinear rate result. We will use this argument to show that the gradient
method is guaranteed to converge at the sublinear rate O(1/k) when the objective
function is smooth and convex.

Again, the dissipation inequality is constructed by solving the following condition[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0.

When f is smooth and convex, we want to show the gradient method converges at the rate
O(1/k). We have A = I, B = −αI, and ρ2 = 1. The key issue is how to choose X such that[

xk − x∗
∇f(xk)

]T
X

[
xk − x∗
∇f(xk)

]
≤ f(x∗)− f(xk) (4.9)
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If f is L-smooth and convex, the following inequality holds for all x and y

f(x) ≥ f(y) +∇f(y)T(x− y) +
1

2L
‖∇f(x)−∇f(y)‖2

We set x = x∗ and y = xk in the above inequality. This leads to

f(x∗) ≥ f(xk) +∇f(xk)
T(x∗ − xk) +

1

2L
‖∇f(x∗)−∇f(xk)‖2

which can be rewritten in the form of (4.9) with X =

[
0 −1

2
I

−1
2
I 1

2L
I

]
. We can set P = pI and

the LMI condition just becomes[
0 −αp
−αp α2p

]
−
[

0 −1
2

−1
2

1
2L

]
≤ 0 (4.10)

When α = 1
L

, we can set p = L
2
. The left side of the above inequality just becomes a zero

matrix and the testing condition is met. Now the dissipation inequality holds. In addition,

we have f(xk+1) − f(xk) ≤ −
(
α− Lα2

2

)
‖∇f(xk)‖2 ≤ 0. So we do have f(xk+1) ≤ f(xk),

and (4.8) follows as a consequence. Finally, we have shown the following bound holds for
the gradient method with a smooth and convex objective function

f(xk)− f(x∗) ≤ L‖x0 − x∗‖2

2(k + 1)

4.3.2 Extension for Nesterov’s Method

Nesterov’s method can be modified for smooth and convex objective functions. In this case,
we will use time-varying parameters, i.e. αk and βk.

Specifically, given L-smooth convex f , Nesterov’s method iterates as follows:

xk+1 = xk − α∇f((1 + βk)xk − βkxk−1) + βk(xk − xk−1) (4.11)

where α = 1
L

and βk is a prescribed sequence. One typical choice is setting βk = k−1
k+2

.
Another popular choice is defining βk recursively as follows.

ζ−1 = 0, ζk+1 =
1 +

√
1 + 4ζ2k
2

, βk =
ζk−1 − 1

ζk
.

The sequence {ζk} satisfies ζ2k − ζk = ζ2k−1. Due to the time-varying nature of βk, we need
to use the following time-varying model for (4.11):

ξk+1 = Akξk +Bkuk

vk = Ckξk

uk = ∇f(vk)

(4.12)
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We choose Ak =

[
(1 + βk)I −βkI

I 0

]
, Bk =

[
−αI

0

]
, Ck =

[
(1 + βk)I −βkI

]
, and ξk =[

xk
xk−1

]
. Then vk = Ckξk =

[
(1 + βk)I −βkI

] [ xk
xk−1

]
= (1 + βk)xk − βkxk−1, and uk =

∇f(vk) = ∇f((1 + βk)xk − βkxk−1). We can see Bk actually does not depend on k. But if
we let α depend on k, then we need B to depend on k. So (4.12) is general. We will modify
the dissipation inequality to provide a sublinear rate analysis for (4.12).

Now for the general model (4.12), (A,B,C) depend on k. Therefore, we need to modify
the above condition as [

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
−Xk ≤ 0.

The key question is what Xk we should use. We can choose (Mk, Nk) to show xk − x∗
xk−1 − x∗
∇f(yk)

T

Mk

 xk − x∗
xk−1 − x∗
∇f(yk)

 ≤ f(xk)− f(xk+1)

 xk − x∗
xk−1 − x∗
∇f(yk)

T

Nk

 xk − x∗
xk−1 − x∗
∇f(yk)

 ≤ f(x∗)− f(xk+1)

where Nk and Mk directly depend on βk. Now we define f ∗ = f(x∗). If we choose Xk :=
µkMk + (µk+1 − µk)Nk for all k. then the supply rate S satisfies the condition

S(ξk, wk) =

[
ξk
wk

]T
Xk

[
ξk
wk

]
≤ µk(f(xk)− f ∗)− µk+1(f(xk+1)− f ∗).

which can be used to show the rate O(1/k2) if µk is chosen properly. Specifically, if we can
find positive semidefinite Pk and non-negative increasing sequence {µk} such that[

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
− µkMk − (µk+1 − µk)Nk ≤ 0.

then we will be able to use our standard dissipation inequality arguments to show

(ξk+1 − ξ∗)TPk+1(ξk+1 − ξ∗)− (ξk − ξ∗)TPk(ξk − ξ∗) ≤
[
ξk
wk

]T
Xk

[
ξk
wk

]
≤ µk(f(xk)− f ∗)− µk+1(f(xk+1)− f ∗).

This is equivalent to

(ξk+1 − ξ∗)TPk+1(ξk+1 − ξ∗) + µk+1(f(xk+1)− f ∗) ≤ (ξk − ξ∗)TPk(ξk − ξ∗) + µk(f(xk)− f ∗).
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We can iterate the above inequality to show

µk(f(xk)− f ∗). ≤ (ξk − ξ∗)TPk(ξk − ξ∗) + µk(f(xk)− f ∗) ≤ (ξ0 − ξ∗)TP0(ξ0 − ξ∗) + µ0(f(x0)− f ∗).

If 1
µk

= O(1/k2), then we immediately obtain the rate O(1/k2) for Nesterov’s method.

Clearly, obtaining a rate O(1/k2) is more subtle than obtaining other rates due to the
fact that now we need to find a sequence of Pk and µk. A specific choice for Neseterov’s

method is setting µk := (ζk−1)
2 and Pk := L

2

[
ζk−1

1− ζk−1

] [
ζk−1 1− ζk−1

]
. We will not talk

about O(1/k2) rate in future lectures.

4.4 Summary

The dissipation inequality appeared in the previous lectures has the following form:

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, uk)

We can use the dissipation inequality to prove various results:

1. If S(ξk, uk) ≤ 0, then the dissipation inequality becomes V (ξk+1)− ρ2V (ξk) ≤ 0. This
is a linear convergence in V . We have used this type of arguments to show the linear
convergence of the gradient method.

2. If S(ξk, uk) ≤ −(f(xk+1) − f(x∗)) + ρ2(f(xk) − f(x∗)), we have V (ξk+1) + f(xk+1) −
f(x∗) ≤ ρ2(V (ξk)+f(xk)−f(x∗)). This is a linear convergence in V (ξk)+f(xk)−f(x∗).
We have shown the linear convergence of Nesterov’s method via this type of arguments.

3. If S(ξk, uk) ≤ f(x∗) − f(xk) and ρ2 = 1, then the dissipation inequality leads to the
inequality V (ξk+1) − V (ξk) + f(xk) − f(x∗) ≤ 0. Summing this inequality leads to∑k

t=0(f(xt) − f(x∗)) ≤ V (ξ0) − V (ξk+1). We have used this argument to show that
the gradient method is guaranteed to converge at the sublinear rate O(1/k) when the
objective function is smooth and convex.

4. For Nesterov’s method under the convex assumption, the supply rate condition changes
with k. We can obtain an O(1/k2) rate in this case.
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