
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 5
Policy-Based Reinforcement Learning for Control, Part I

Lecturer: Bin Hu, Date:09/05/2023

Reinforcement learning (RL) has shown great promise for continuous control tasks. Policy
optimization is a main workhorse for training RL agent to perform control tasks. In this
lecture, we will discuss policy optimization and several popular policy-based RL methods.

There are many different types of policy-based RL methods, e.g. REINFORCE, Actor-
Critic, natural policy gradient, TRPO, PPO, ACTKR, SAC, SVPG, etc. The basic idea is
very simple, i.e. we parameterize the policy and then perform gradient-based optimization
on the policy parameters using data. To illustrate this idea, consider the general nonlinear
control for the following system:

xt+1 = f(xt, ut, wt)

yt = g(xt, et)
(5.1)

where xt is the state, ut is the control action, wt is the disturbance, yt is the output measure-
ment that can be used for control, and et characterizes all the external factors that affect the
measurement. We want to design a feedback controller that determines control actions based
on the output measurement. The key idea in policy optimization is that the nonlinear con-
trol design for (5.1) can be formulated as an optimization problem minK∈K C(K), where the
decision variable K is determined by the controller parameterization, the cost function C(K)
is a pre-specified control performance measure, and the feasible set K carries the information
of the constraints on the controller. These concepts are briefly reviewed as follows.

• Decision variable K: At every time step t, the controller K calculates the control action
ut based on the measurement yt or a stack of past measurements {yt, yt−1, · · · , yt−N}.
In the simplest case, we have the state measurement, i.e. yt = xt, and want to use
a linear time-invariant (LTI) state-feedback controller. Then K is parameterized as
a static matrix and we have ut = −Kxt. Then this matrix K becomes the decision
variable of our policy optimization problem. For the so-called linear output feedback
case, the controller can be a dynamical system that takes the output measurement yt
as the input and the control action ut as the output, e.g.

ξt+1 = AKξt +BKyt

ut = CKξt +DKyt
(5.2)

Then the controller K is parameterized by four matrices, i.e. (AK , BK , CK , DK). For
nonlinear control, nowadays it is popular to parameterize K as neural networks.

5-1

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

• Objective function C(K): C(K) measures the quality of the controller K, and how to
choose this cost function remains more of an art than a science. It really depends on
the control tasks at hand. For example, for tracking tasks, we want to achieve small
tracking errors while using small control actions. Then the cost can be a weighted
sum of tracking error and control energy (but we need to tune the weights carefully).
Sometimes the choice of the cost function is less obvious. For example, for self-driving,
it is not that clear what is a good cost function choice that captures “comfortable
driving.” In general, we have to choose the objective functions in a case-by-case manner,
and this requires domain expertise.

• Feasible set K: Constraints on the decision variable K are posed to account for various
stability, robustness, or safety concerns. A common example in linear control tasks
is the stability constraint, i.e. K is required to stabilize the closed-loop dynamics.
There are also other constraints related to robustness or safety concerns in control
design. The constraints will naturally confine the policy search to a feasible set. For
nonlinear control tasks, global stability is not required in general, and how to enforce
local stability is still not that clear at this moment. The current practice in deep RL is
just posing norm constraints on the weight matrices of the neural network policy K or
even adopting an unconstrained optimization formulation on a finite-horizon problem.
The stability requirement is somehow embedded in the cost function (e.g. the cost will
be huge for locally unstable system).

Once the control design problem is formulated as the policy optimization problem, one
can just apply gradient-based methods such as gradient descent or quasi-Newton methods
to optimize over the policy space. For example, if the cost function is differentiable, then it
is straightforward to apply the gradient descent method:

Kl+1 = Kl − α∇C(Kl) (5.3)

In general, C is non-convex, and one may need to use multiple initial points to find a reason-
ably good solution. One may also use quasi-Newton updates to accelerate the optimization
process.

Model-based Policy Update vs. Model-Free Policy-Based RL. When the system
dynamics (5.1) are known and relatively easy, one can typically calculate ∇C(K) directly.
However, if the system is unknown or too complex, then one has to estimate ∇C(K) from
data. Importantly, policy-based RL methods can be viewed as model-free versions of the
gradient-based scheme (5.3), where various learning tools such as policy gradient theorem or
stochastic finite difference are used to estimate ∇C(K) from sampled trajectories of (5.1).
Such model-free methods can be more flexible and easy-to-implement for the following two
main user-cases:

• Case 1 (Complex hybrid dynamics): The dynamic model can be very complex for
robotic tasks such as robotic hand manipulation due to complicated object shapes

5-2

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

and contact forces. No matter how complicated the dynamics are, model-free policy
optimization can be implemented using sampled trajectories in a unified manner.

• Case 2 (High-dimensional rich observation): There are many modern autonomous sys-
tems that rely on high-dimensional rich sensing modalities such as cameras and LI-
DARs. In this case, g maps the system state to high-dimensional measurements such
as images and is significantly affected by external environmental factors such as light-
ing and weather. Model-free policy optimization provides an efficient framework to
learn the controller as a mapping from the high-dimensional sensory data yt (such as
images) to the control action ut in an end-to-end manner.

Next, we present a few examples to illustrate how model-based policy update and model-free
policy-based RL work.

5.1 Model-based Policy Update: LQR as an Example

For illustrative purposes, let’s look at the linear quadratic regulator (LQR) problem first.
For simplicity, consider the following linear dynamical system

xt+1 = Axt +But (5.4)

with the quadratic cost:

C = Ex0∼D
∞∑
t=0

(xTt Qxt + uTt Rut) (5.5)

where Q and R are positive definite matrices. Let Σ0 be the covariance matrix of x0. The
design goal for LQR is to choose control actions to minimize (5.5).

To formulate LQR as policy optimization, we first need to parameterize the policy/controller.
For LQR, it is known that a state-feedback linear controller can achieve the optimal per-
formance. Hence we can just confine the policy search to linear state-feedback policies,
ut = −Kxt. Now the cost becomes a function of K. We have

C(K) = Ex0∼D
∞∑
t=0

xTt (Q+KTRK)xt (5.6)

In principle, we can just think the above function as an objective function and K as de-
cision variables. This allows us to formulate the LQR problem as an optimization problem
minK C(K). Suppose we are using the gradient descent method (5.3) to solve this optimiza-
tion problem. If we know (A,B,Q,R), then we can calculate both C(K) and ∇C(K) in
closed-form.

5-3

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

Cost formula. If the model is known, the cost C(K) can be calculated as trace(PKΣ0) by
solving the following Bellman equation (Lyapunov equation)

PK = Q+KTRK + (A−BK)TPK(A−BK). (5.7)

To see this, we just rewrite (5.6) as

C(K) = Ex0∼D xT0

(
∞∑
t=0

((A−BK)T)t(Q+KTRK)(A−BK)t

)
x0 (5.8)

When ρ(A − BK) ≥ 1, the above cost blows up to infinity. It makes sense to restrict the
policy search within the class of stabilizing K. So we have K = {K : ρ(A − BK) < 1}.
When ρ(A − BK) < 1, we know

∑∞
t=0((A − BK)T)t(Q + KTRK)(A − BK)t will converge

to a fixed constant matrix. We denote this matrix by PK . The Bellman equation can be
derived as follows.

xT0PKx0 =
∞∑
t=0

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 +
∞∑
t=1

xTt (Q+KTRK)xt

= xT0 (Q+KTRK)x0 + xT1PKx1

= xT0 (Q+KTRK)x0 + xT0 (A−BK)TPK(A−BK)x0

= xT0
(
Q+KTRK + (A−BK)TPK(A−BK)

)
x0

Therefore, the Bellman equation takes the form (5.7). For any fixed K, the Bellman equation
is a linear equation of PK . Hence the existence and uniqueness of the solution to the Bellman
equation can be established using linear equation theory. To obtain a closed-form solution
for PK , we introduce the Kronecker product and the vectorization operation. The Kronecker
product of two matrices A ∈ Rm×n and B ∈ Rp×q is denoted by A⊗B and given by:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
where aij is the (i, j)-th entry of A. Let vec denote the standard vectorization operation
that stacks the columns of a matrix into a vector. For example, we have

vec

1 2
3 4
5 6

 =

1
3
5
2
4
6

 .

5-4

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

Since vec(AXB) = (BT ⊗ A) vec(X), we must have

vec
(
(A−BK)TPK(A−BK)

)
=
(
(A−BK)T ⊗ (A−BK)T

)
vec(PK)

Then we can vectorize both sides of the Bellman equation (5.7) to obtain

vec(PK) = vec(Q+K>RK) +
(
(A−BK)T ⊗ (A−BK)T

)
vec(PK)

which can be easily solved for PK :

vec(PK) =
(
I − (A−BK)T ⊗ (A−BK)T

)−1
vec(Q+KTRK)

Now we have a closed-form solution for PK . Using properties of the Kronecker product, one
can show

(
I − (A−BK)T ⊗ (A−BK)T

)
is nonsingular under the assumption ρ(A−BK) <

1. The key message here is that for any stabilizing K, we can solve (5.7) to obtain PK and
then the cost value is given by C(K) = Ex0∼DxT0PKx0 = trace(PKΣ0).

Policy gradient formula. A useful result from control theory states that the LQR policy
gradient ∇C(K) can be calculated as

∇C(K) = 2((R +BTPKB)K −BTPKA)ΣK (5.9)

where ΣK =
∑∞

t=0 E(xtx
T
t) =

∑∞
t=0(A−BK)tΣ0((A−BK)T)t. There are several proofs for

this result. We present one proof here. We can take the total derivative of both sides of the
Bellman equation to get

dPK = d(KTRK) + d
(
(A−BK)TPK(A−BK)

)
By the chain rule, we have

dPK

=dKTRK +KTRdK + (A−BK)TdPK(A−BK)− dKTBTPK(A−BK)− (A−BK)TPKBdK

=dKT
(
(R +BTPKB)K −BTPKA

)
+
(
KT(R +BTPKB)− ATPKB

)
dK + (A−BK)TdPK(A−BK)

If we view dPK as the variable, the above is a Bellman equation which can be solved as

dPK =
∞∑
t=0

((A−BK)T)t(dKTEK + ET
KdK)(A−BK)t

where EK = (R + BTPKB)K − BTPKA. By definition, we have dC(K) =
∑

i,j
∂C
∂Kij

dKij =

trace(∇C(K)dKT). Since C(K) = trace(PKΣ0), it is also straightforward to show (you
should verify this step by yourself)

dC(K) = trace(dPKΣ0) = trace(2EKΣKdK
T)

Therefore, we have ∇C(K) = 2EkΣK .

5-5

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

Algorithms beyond the gradient descent method. Based on the gradient formula,
two other algorithms beyond the gradient method Kl+1 = Kl − α∇C(Kl) can be used.

• Natural policy gradient: Kl+1 = Kl − α∇C(Kl)Σ
−1
Kl

= Kl − 2α((R + BTPKl
B)Kl −

BTPKl
A). This algorithm can be viewed as a quasi-Newton variant of the gradient

method where ΣK is used to improve the condition of the update direction.

• Policy iteration: Kl+1 = Kl − (R + BTPKl
B)−1∇C(Kl)Σ

−1
Kl

= Kl − 2α(Kl − (R +

BTPKl
B)−1BTPKl

A). This method provides even better conditioning on update di-
rection than the natural policy gradient method. When α = 1

2
, this method exactly

becomes the policy iteration method. Interestingly, the policy iteration method can
also be implemented in a model-free manner for LQR. For example, Least Square Policy
Iteration (LSPI) provides one such model-free implementation.

5.2 Model-Free Policy Optimization

There is a famous result: policy gradient theorem. This theorem can be used to estimate
the policy gradient from sampled trajectories directly. Notice that policy gradient theorem
requires the policy to be stochastic so that we can explore the space. Denote the policy
parameter in our controller K as a big vector θ. Now we discuss several versions of the
policy gradient theorem.

Warm-up: Policy Gradient Theorem V0. To make things simple, we consider the
additive structure for the cost (which is standard for RL) and use a large N to approximate
the infinite horizon. Therefore, we consider

C(θ) = E
N∑
t=0

γtc(xt, ut) (5.10)

Clearly the joint density of (x0, u0, x1, u1, x2, u2, . . . , xN , uN) depends on θ and we denote
this density as fθ. By definition, we have

Ec(xt, ut) =

∫
c(xt, ut)fθ(x0, u0, x1, u1, x2, u2, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

Hence we can take gradient on both sides to show

∇θEc(xt, ut) =

∫
c(xt, ut)∇θfθ(·)dx0du0dx1du1 . . . dxNduN

=

∫
c(xt, ut)

∇θfθ(·)
fθ(·)

fθ(x0, u0, x1, u1, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

=

∫
c(xt, ut)∇θ log fθ(·)fθ(x0, u0, x1, u1, . . . , xN , uN)dx0du0dx1du1 . . . dxNduN

= E [c(xt, ut)∇θ log fθ(·)]

5-6

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

In addition, we have

log fθ(x0, u0, . . . , xN , uN)

= log πθ(uN |xN) + log p(xN |xN−1, uN−1) + log πθ(uN−1|xN−1) + log p(xN−1|xN−2, uN−2) + . . .

After taking gradients, we have

∇θ log fθ(x0, u0, . . . , xN , uN) =
N∑
t=0

∇θ log πθ(ut|xt)

Putting things together, we have

∇C(θ) =
N∑
t=0

γtE

[
c(xt, ut)

N∑
k=0

∇θ log π(uk|xk)

]

= E

[(N∑
t=0

γtc(xt, ut)
)(N∑

k=0

∇θ log π(uk|xk)
)]

The above is the most naive version of the policy gradient theorem. It states that we can
estimate the policy gradient by sampling the cost sequence and calculating ∇θ log π(ut|xt).

How to calculate∇θ log πθ(ut|xt)? When applying the policy gradient theorem, a stochas-
tic policy has to be used. The noise is injected into the gradient for exploration purpose. For
example, consider a LQR problem where one can confine the policy search to linear policies,
i.e. ut = −Kxt. However, to apply the policy gradient theorem, noise has to be injected into
the policy, and hence one typically use a Gaussian policy, i.e. ut ∼ N (−Kx, σI). Basically
we just add zero-mean Gaussian noise to the control input −Kxt. How can we calculate
∇θ log πθ(ut|xt) for Gaussian policies? Suppose σ is fixed. Then log will cancel the exponen-
tial part in the Gaussian density, and we can calculate∇θ log πθ(ut|xt) easily. For complicated
tasks, we typically use neural network to parameterize the policy, and ∇θ log πθ(ut|xt) can
be calculated using standard back propagation method. Such operations are available in
PyTorch or TensorFlow.

REINFORCE: Policy Gradient Theorem V1. The gradient estimator introduced
above is noisy and has high variance. Now we discuss an improved version of the policy
gradient theorem. Let us directly address the infinite horizon problem, i.e.

C(θ) = E
∞∑
t=0

γtc(xt, ut)

Notice the process is causal, i.e. (xt, ut) do not depend on the states/actions in the future.
To calculate Ec(xt, ut), we only need the joint density of (x0, u0, x1, u1, . . . , xt, ut). Hence we
have

Ec(xt, ut) =

∫
c(xt, ut)fθ(x0, u0, x1, u1, x2, u2, . . . , xt, ut)dx0du0dx1du1 . . . dxtdut

5-7

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

After applying similar tricks, we can show

∇θEc(xt, ut) = E

[
c(xt, ut)

t∑
k=0

∇θ log πθ(uk|xk)

]

To see what happens when we sum all terms, we write out the first few term explicitly:

∇θEc(x0, u0) = E [c(x0, u0)∇θ log πθ(u0|x0)]
γ∇θEc(x1, u1) = E [γc(x1, u1)∇θ log πθ(u0|x0)] + E [γc(x1, u1)∇θ log πθ(u1|x1)]
γ2∇θEc(x2, u2) = E

[
γ2c(x2, u2)∇θ log πθ(u0|x0)

]
+ E

[
γ2c(x2, u2)∇θ log πθ(u1|x1)

]
+E

[
γ2c(x2, u2)∇θ log πθ(u2|x2)

]
Based on the above pattern, we can get

∇C(θ) = E
∞∑
t=0

[(∞∑
k=t

γkc(xk, uk)
)
∇θ log πθ(ut|xt)

]

= E
∞∑
t=0

[
γt
(∞∑
k=t

γk−tc(xk, uk)
)
∇θ log πθ(ut|xt)

]

which gives an improved version of the policy gradient theorem. The algorithm REINFORCE
is actually based on the above gradient formula.

Generalizations. There are many variants of the policy gradient theorem which can be
used to improve the policy gradient estimation. Specifically, we can estimate the policy
gradient as

∇C(θ) = E
∞∑
t=0

[γtΨt∇θ log πθ(ut|xt)] (5.11)

where Ψt can be chosen as:

• Monte Carlo estimation:
∑∞

t′=t γ
t′−tct′

• Baselined versions of Monte Carlo estimation:
∑∞

t′=t(γ
t′−tct′ − b(xt))

• State-action value function: Qπ(xt, ut)

• Advantage function (Actor-critic method) : Aπ(xt, ut)

• TD residual: ct + γV π(xt+1)− V π(xt)

• Generalized advantage estimation

5-8

ECE 586 BH Lecture 5 — 09/05/2023 Fall 2023

We will skip the detailed derivations of these variants. There are also various improvements of
the vanilla policy gradient method. Examples include the natural policy gradient method, the
trust-region policy optimization (TRPO) method, the proximal policy optimization (PPO),
and the soft actor-critic (SAC) method. There exist efficient implementations of TRPO,
PPO, and SAC which can be found online. it is worth emphasizing that all these methods
require the cost function to have an additive structure.

Zeroth-order optimization. When using the policy gradient theorem, we inject noise
into the control actions for exploration purposes. Suppose now we want to directly learn
the gradient of a deterministic policy. Then we can use evolution strategies (or zeroth-order
optimization) which does not require stochastic policy. The exploration in zeroth-order
optimization is done by perturbing the policy randomly. Specifically, consider the following
estimation of the policy gradient:

∇C(K) ≈
Eε∼N (0,σ2I)C(K + ε)ε

σ2

To understand this update rule, we analyze a shifted variant of the above update:

g =
Eε∼N (0,σ2I)(C(K + ε)− C(K))ε

σ2
=

Eε∼N (0,I)(C(K + σε)− C(K))ε

σ

Roughly speaking, the above estimation shifts the original zeroth-order gradient estimate
with a zero mean vector and should not change the mean of the gradient estimator. Due to
the fact limσ→0

C(K+σε)−C(K)
σ

= (∇C(K))Tε, we can show:

Eε∼N (0,I)

(
lim
σ→0

C(K + σε)− C(K)

σ

)
ε = Eε∼N (0,I)(ε

T∇C(K))ε

= Eε∼N (0,I)ε(ε
T∇C(K))

= Eε∼N (0,I)(εε
T)∇C(K)

= ∇C(K)

Therefore, the zeroth-order optimization can be viewed as a stochastic version of the finite
difference method. Notice that zeroth-order optimization is general since it can address any
cost function. The drawback is that this approach is too general and does not exploit the
problem structure of MDPs. Hence the sample efficiency of zeroth-order optimization may
not be as good as policy gradient theorem when applied to standard Markov decision process
(MDP) problems with additive cost structures. Nevertheless, variants of the above zeroth-
order optimization methods have achieved competitive results on many model-free control
tasks.

5-9

