ECE 586 BH: Interplay between Control and Machine Learning Fall 2023
Lecture 6

Policy-Based Reinforcement Learning for Control, Part II

Lecturer: Bin Hu, Date:09/07/2023

Although policy-based RL has shown great promise for many complex control tasks, its
theoretical properties are still underexplored. There are many theoretical questions. For
example, we can ask the following questions.

Does the policy gradient method converge provably? If so, to what points? What is the
sample complexity to achieve an e-approximate solution in some certain sense?

Since policy optimization is non-convex in general, the answers to the above questions
are non-trivial. Specifically, consider mingex C(K) with non-convex C and K. Then it is
non-trivial to show the convergence properties of K,y = K;—aVC(K;). As a matter of fact,
it is even non-trivial to show that the gradient method will always maintain the feasibility
and stay in the non-convex feasible set . Very recently, there is a research trend studying
the theoretical properties of policy optimization methods on relatively simple linear control
benchmarks. In this lecture, we will review a few representative results along this research
direction, and list several open questions. More discussions can be found in [3].

6.1 Background: Non-Convex Optimization Theory

Finding stationary points in unconstrained non-convex optimization. Let’s first
look at the unconstrained optimization setting without worrying about the feasible set AC.
We will review several basic facts from non-convex optimization theory. In the unconstrained
setting, a function C(K) is L-smooth if the following inequality holds for all (K, K'):

L
C(K') < C(K) + (VC(K), (K' = K)) + Z[|K" = K|
For L-smooth functions which are bounded below by a finite number, the gradient descent

method K1 = K; — oVC(K;) with a constant stepsize o = o < % can be guaranteed to

find an e-approximate stationary point within O (E%) steps. Specifically, we have

L
C(Ki1) < C(K) +(VC(Ky), Ky — Kp) + §||Kl+1 — Ki|l7
2

— (i) + (~a+ 55 ) IV

Summing the above inequality from [ =0 to NV

(o= 25) Siwetm; < e -t

6-1



ECE 586 BH Lecture 6 — 09/07/2023 Fall 2023

If o <%, then D=a— LTO‘Q > 0. We know C(K;41) > C* for some C*. Then we must have

N *
S Ive)p < H=E
=0

C(Ky) —C*
D(N +1)

0<I<N

N
. 1
= min [|[VC(K))[|7 < No1 > IveE)|; <
=0

To find a point whose gradient norm is not bigger than ¢, we need to run N steps with

N:M_lzo(l).

De? g2

which is the worst-case iteration complexity for finding e-approximate stationary point in

the non-convex smooth setting. As a matter of fact, one can further show that the gradient

descent method with the diminishing stepsize o = m is guaranteed to convergence to

2
we have &£ < ap — Li, and the following

a stationary point in this setting. If o < 5 5

inequality holds

1
L’

> allVe(K) 3 < 2(C(Ko) - C7).
=0

If ||VC(K))||r does not converge to 0, then we can use the fact that >_,° a; = oo to prove
that the above inequality cannot hold, leading to a contradiction. Combining the above
argument with the fact that the iterates generated by the gradient descent method form a
Cauchy sequence (this can be proved using the special form of the gradient descent method),
we can show that the gradient descent method with the diminishing stepsize must converge
to a stationary point of C.

What if we can show stationary is global minimum? There are many non-convex
optimization problems where all the stationary points are global minimum. Then the gra-
dient descent method with the diminishing stepsize is guaranteed to converge to a global
minimum! Notice that {C(K))}°, is monotonically decreasing, and hence has a unique limit
point. By the properties of the gradient descent method and the diminishing stepsize rule,
this limit point has to be equal to the cost value of some stationary point. If every station-
ary point is global, then this limit point has to be the global optimal value C*. And hence
we must have C(K;) — C* monotonically. Many global convergence results in non-convex
optimization boil down to proving that every stationary point is global.

From the unconstrained setting to the constrained setting. For policy optimiza-
tion, it is quite often that we need to pose constraints on the controllers. The constrained
set is typically non-convex, and hence we cannot just use projection. Can we just apply the
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gradient descent method (without projection) to achieve the same convergence result as in
the unconstrained setting? If the cost function is a barrier function on the feasible set by
itself, then the answer is yes! In this case, the gradient descent method (without projection)
will maintain feasibility via decreasing the cost value, and all the above arguments for uncon-
strained optimization still work! Now we formalize this fact. Notice that a function C on a
constrained feasible set K is coercive if for any sequence { K;}°; C K, we have C(K;) — +o00
when ||Kj||r — +o00, or K! converges to an element on the boundary dK. The following
formal result (adopted from [3]) is useful.

Proposition 1. Suppose C(K) is coercive over K. Assume further that C is twice continu-
ously differentiable over KC. Then the following statements hold:

1. The sublevel set K, :={K € K : C(K) <~} is compact for any v > C*.

2. The function C(K) is L-smooth on K., and the constant L depends on 7 and the
problem parameters. Specifically, for any (K, K') satisfying tK + (1 — t)K' € I,
Vt € [0, 1], the following inequality holds

C(K') < C(K) + (VC(K), (K' = K)) + gHK’ — K|

3. Consider the gradient descent method K; .1 = K; — owVC(K)). Suppose Ky € K. Let

70 = C(Ky). Suppose L is the smoothness constant of C(K) on K,,. Then, for any
constant stepsize 0 < a < %, we have K; € K., for all |, and the gradient descent
1

method is guaranteed to find an e-approximate stationary point in O (5—2) steps.

4. If every stationary point of C is actually a global minimum, then the gradient descent

method with the diminishing stepsize o; = ﬁ is guaranteed to stay in the feasible
set and eventually find the global minimum of C. In addition, we have C(K;) — C*
monotonically.

We briefly discuss some key proof ideas here. Statement 1 is just a consequence of the
coercive property and makes perfect sense geometrically. Statement 2 is an important result.
Since C is twice continuously differentiable, we know that the function ||V2C(K)|| (with ||-]]
being the operator norm) is continuous. By Weierstrass theorem, we know that | VZC(K)|
has to be bounded on the compact set K,. We denote this uniform upper bound as L,
and hence J is L-smooth on K, (the associated inequality can be proved using mean value
theorem). Statements 3 and 4 can be viewed as the constrained versions of the unconstrained
convergence results that we have covered before. The only new thing here is that we need
to argue that the gradient descent update directions guarantee the iterations to stay in the
compact sublevel set K.,. This is quite intuitive since C is a barrier function by itself. See [3]
for more details. For the purpose of applying Proposition 1, we need to show C is coercive,
twice continuously differentiable, and satisfies the condition that every stationary point is
global. As a matter of fact, we can prove all these properties for the LQR policy optimization
problem in a relatively self-contained manner.
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6.2 Global Convergence of Policy Gradient on LQR

Now we apply Proposition 1 to show that the gradient descent method is guaranteed to
achieve global convergence on the LQR problem. Recall that given a discrete-time LTI

system ;.1 = Az; + Buy, we can formulate the LQR problem as a policy optimization
problem ming e C(K) with the following choice of (K, C, K).

e Decision variable K: K is simply the feedback gain matrix parameterizing the linear
state-feedback policy, i.e. u; = —Kux; for all t.

o Cost: We have C(K) = Eypup [Y oo 8 (A — BK))(Q + KTRK)(A — BK)'z], which
is a function of K. This cost can also be computed as C(K) = trace(Px>y), where
Yo = Exoxg is the (full-rank) covariance matrix of xg, and Pk is the solution of the
following Lyapunov equation:

(A— BK)"Px(A— BK)+Q+ K'RK = Pxg. (6.1)

e Feasible set: The feasible set consists of all the stabilizing LTI state-feedback policies,
ie. K={K:p(A— BK) < 1}. For any K ¢ K, our LQR cost is not well-defined.

Before applying Proposition 1 to the above policy optimization problem, we need to check
the following items:

1. Is C twice continuously differentiable? The answer is yes. To see this, no-
tice that the analytical solution of the Lyapunov equation (6.1) can be calculated as
vee(Px) = (I — (A= BK)T @ (A — BK)T) ' vee(Q + KTRK). Hence Py is a ratio-
nal function of the elements of K. Then we know that C is a rational function of the
elements of K. Therefore, J is real analytical and twice continuously differentiable.

2. Is stationary global? Yes! We can use the analytical form of the gradient VC to
verify this. Suppose K1 is a stationary point such that VC(KT) = 0. Hence we have

VC(K") =2((R+ B"Pxt B)K" — BT Pgt A)S it = 0 (6.2)

where Yyt = > o E(xx]) > ¥ is guaranteed to be full rank (we assume that 3o
is full rank). So we must have (R + BT PyiB)K' — BTPgtA = 0. This leads to
KT = (R + B"PyiB) 'BTPgt A, which can be substituted back to the Lyapunov
equation (6.1) to yield the Riccati equation. This shows that KT must be the global
optimal policy for LQR.

3. Is C coercive? If () and R are both positive definite, then one can show the
LQR cost is coercive. See [3] for more details.

Therefore, we can directly apply Proposition 1 to establish the global convergence of the
gradient descent method on the LQR problem.

6-4



ECE 586 BH Lecture 6 — 09/07/2023 Fall 2023

Convergence rate and sample complexity. Arguably the above result establishes the
global convergence of policy optimization on LQR via using least amount of LQR cost
properties. However, the downside is that the above analysis does not give a satisfying
convergence rate. Notice that the global convergence of policy gradient methods on LQR
was first established in [1], from which the original results leverage a stronger property of
the LQR cost to prove a much faster rate. Specifically, [1] proves that the LQR cost satisfies
the following gradient dominance property:

C(K) — C(K*) < invcmn%, VK € K, (6.3)

where K* is the optimal policy, and p is some positive constant. Notice that the gradi-
ent dominance property automatically guarantees that the stationary point is global (what
happens in (6.3) if setting VC(K) = 07). However, this property is much stronger, and
can be combined with the L-smoothness property to establish a linear convergence rate
C(K;) — C(K*) < (1 — 2ua + puLa®)Y(C(Ky) — C(K*)) (why? verify this by yourself!). In
addition, when the model is unknown, [1] provides the first sample complexity result for
model-free policy optimization on LQR. See [1] for more details.

6.3 Global Results for H., State-Feedback Synthesis

Sometimes the cost function for policy optimization can be nonsmooth. This is especially
true for robust control tasks that address the worst-case disturbances. The resultant policy
optimization problem becomes non-convex and non-smooth. In this setting, we need to use
more advanced optimization algorithms such as Goldstein’s subgradient method. In this
section, we briefly review one such example, namely the policy optimization for H,, state-
feedback synthesis. The problem formulation is stated as follows. Consider the LTI system
Typ1 = Az + Buy + wy initialized at g = 0. The design objective of H., control is to choose
{u:} to minimize the quadratic cost C := Y 1o (z] Q¢ +u/ Ru,) in the presence of the worst-
case (o disturbance satisfying Y = [lw||* < 1 (the constant 1 can be changed to any other
positive number). Suppose the state measurement is available. From robust control theory,
it suffices to parameterize the controller as u; = —Kx,; (this fact is non-trivial). Then the
Hoo state-feedback synthesis can be reformulated as mingex C(K) with the cost C(K) being
defined as the following closed-loop H,, norm:

C(K) = sup N2 (€71~ A+ BK)T(Q+ KTRK)(¢®I — A+ BK)™).  (6.4)

max
we(0,27]

The reason is that the above cost actually satisfies

o0

C*(K) = Z v/ (Q+ K'RK)r, = _ max Z(x:th + ! Ruy).

S5l & T2 lwd2<1

The above cost is well defined only for K satisfying p(A— BK) < 1. Therefore, this problem
yields the same feasible set as the LQR problem, i.e. K = {K : p(A— BK) < 1}.
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Difficulty: Non-smoothness. A new technical challenge here is that this H., cost (6.4)
can be non-differentiable at some important feasible points, e.g., the optimal points, and
hence Proposition 1 cannot be applied. From (6.4), we can see that this cost function is
subject to two sources of nonsmoothness: the largest eigenvalue for a fixed frequency w is
nonsmooth, and the optimization step over w € [0, 27] is also nonsmooth. We need to use
advanced concepts and algorithms from non-convex non-smooth optimization.

Clarke stationary points. For differentiable functions, a stationary point Kt must satisfy
VC(KT) = 0. We need to generalize the concept of stationary point for non-convex non-
smooth optimization. Most functions used in engineering are at least locally Lipschitz.! By
Rademacher’s theorem, a locally Lipschitz function is differentiable almost everywhere, and
the Clarke subdifferential is well defined for all feasible points. For any K € K, the Clarke
subdifferential is defined as dcC(K) := conv{lim; ,,, VC(K;) : K; —» K, K; € dom(VC) C
K}, where conv denotes the convex hull. A point KT is Clarke stationary if 0 € 9cC(KT).
The condition 0 € dcC(KT) just generalizes our original condition VC(K') = 0. Now the
question becomes how to find Clarke stationary points efficiently.

Goldstein’s subgradient method for policy optimization. In the setting of non-
convex non-smooth optimization, Goldstein’s subgradient method provides a nice general-
ization of the gradient descent method via generating good descent directions in a highly
non-trivial manner (finding a good descent direction for nonsmooth optimization is not
easy!). The concept of Goldstein subdifferential is particularly relevant. Given a point
K € K and a parameter 6 > 0, the Goldstein subdifferential of C at K is defined as
9sC(K) := conv {Ugrep,1)0cC(K')} where Bs(K) denotes the d-ball around K (we im-
plicitly assume Bs(K) C K). The minimal norm element of the Goldstein subdifferential
generates a good descent direction, i.e. we have C(K — 0F/||F||r) < C(K) — 0||F||r, where
F is the minimal norm element in JsC(K). This fact has inspired the developments of Gold-
stein’s subgradient method K;,; = K; — ayF}; with F; being the minimal norm element in
0n,C(K)), and many other implementable variants. Based on the descent property, we can
show that if C is coercive over K, Goldstein’s subgradient method with diminishing stepsize
can be guaranteed to find Clarke stationary points. If we can further show that any Clarke
stationary point is global minimum, then Goldstein’s subgradient method can be guaranteed
to find global minimum provably. This turns out to be exactly the case for H, state-feedback
synthesis, i.e. the H, cost is coercive for positive definite (@, R) and satisfies the condition
that every Clarke stationary point is global minimum. Therefore, Goldstein’s subgradient
method can be directly applied with provable global convergence guarantees. See [2] for
more details.

LA function C : K — R is locally Lipschitz if for any bounded S C K, there exists a constant L > 0 such
that |C(K) — C(K')| < L|K — K'||r for all K,K' € S.
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6.4 Open Issues in LQG and Other Problems

For linear state-feedback control problems, the understanding of the theoretical properties
of non-convex policy optimization is more or less mature. Now we have a big picture of how
policy optimization can achieve global optimality on this type of non-convex problems. See
[3] for more discussions. However, for output feedback problems such as LQG and full-order
Hoo synthesis, there are many open questions. Two key issues are summarized as follows.

e Is stationary global? For output feedback problems such as LQG, the stationary
points may not be global. Notice that the policy for LQG is a state-space system.
When the stationary point is not controllable or observable, then the optimality can
be lost. We need to understand why policy optimization methods can avoid this type
of stationary points.

e Is the cost coercive? The answer is also no. The LQG cost is not a barrier
function any more. How do the policy optimization methods maintain feasibility and
stay in the feasible set? This is also unclear. Some new theoretical developments are
needed to address this issue.

If you want to read more about these topics, see [3, 5, 4, 6].
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