
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 7
A Control Perspective on Certifiably Robust Neural Networks, Part I

Lecturer: Bin Hu, Date:09/12/2023

In this lecture, we will study how to apply robust control tools to tackle the certified
robustness issue in deep learning. We will slightly modify the quadratic constraint approach
that has been covered previously, and then apply it to design certifiably robust neural net-
works for classification tasks.

7.1 Background: Neural Networks for Classification

Consider an image classification task. The goal is to predict the label y ∈ Y := {1, 2, . . . , k}
from the image x ∈ Rd. Suppose a neural network classifier f : Rd → Rk is designed to
achieve this goal. For each image x, the neural network classifier f will generate k logits
values, each of which corresponds to a certain label class. Therefore, we have

f(x) =


f1(x)
f2(x)

...
fk(x)

 , (7.1)

where fi(x) characterizes the possibility that the label of the input x is i. (If we further put
the output of f through a softmax layer, then we will obtain the probability score for each
label class.)

The predicted label for an image input x is arg maxj fj(x). For example, suppose we
have a binary classification task, i.e. we have k = 2 and the classifier f is designed to predict
whether an image is about a cat (class 1) or a dog (class 2). For an image x, if f1(x) > f2(x),
then the predicted label is “cat” (label 1). If f1(x) < f2(x), the predicted label is “dog”
(label 2). Given an image x and its true label y, the classifier f makes the correct prediction
if we have y = arg maxj fj(x).

There are many different network structures that can be used to parameterize the classifier
f . Suppose the total layer number is (h+ 1). Here are a few standard network structures:

• Feedforward: xk+1 = σ(Wkxk + bk) for k = 0, 1, · · · , h

• Residual network: xk+1 = xk − σ(Wkxk + bk) for k = 0, 1, · · · , h

• Many other structures: transformers, etc

Given any input x, the neural network is initialized at x0 = x, and the output satisfies
f(x) = xh+1 (the i-th entry of xh+1 is equal to fi(x)). The nonlinear activation function σ is
applied to every layer in an entry-wise manner.

7-1



ECE 586 BH Lecture 7 — 09/12/2023 Fall 2023

7.2 Adversarial Attacks and Certified Robustness

In the deep learning field, it has been observed that a small adversarial perturbation τ can
fool state-of-the-art neural network classifiers to make the wrong predictions [7]. Specifically,
given an image x and its true label, let’s say that the neural network classifier f makes
the correct prediction, i.e. y = arg maxj fj(x). Then one can apply optimization-based
algorithms such as projected gradient descent to successfully find adversarial perturbation
τ such that ‖τ‖ is very small and y 6= arg maxj fj(x + τ). This issue leads to the study of
certified robustness, which is formally defined below.

Definition 1. A classifier f is certifiably robust at radius ε ≥ 0 at the data point x with
label y if for all τ satisfying ‖τ‖ ≤ ε, we have arg maxj fj(x+ τ) = y.

The fragility of neural networks under small adversarial perturbations can be roughly
explained from a sensitivity perspective. State-of-the-art neural networks typically rely on
very large weight to boost the expressive power. For example, if a feed-forward network
xk+1 = σ(Wkxk + bk) is used, standard training procedures will make ‖Wk‖ large and cause
the network to become very sensitive to input perturbations.1 Consequently, a small change
in the input x can potentially lead to a large change in the output f(x). Intuitively, one
can mitigate this sensitivity issue via controlling the weight norm. For example, the famous

spectral normalization technique just normalizes every layer as xk+1 = σ
(

1
‖Wk‖

Wkxk + bk

)
.

The normalized matrix 1
‖Wk‖

Wk does not have a big spectral norm, and the network layer
becomes less sensitive to input changes. As a matter of fact, such a simple idea has led to
the development of the more general Lipschitz neural network approach, which provides the
state-of-the-art deterministic certified robustness results on image classification benchmarks.
Formally, the classifier f is L-Lipschitz if ‖f(x′)− f(x)‖ ≤ L‖x′ − x‖ for any x, x′ ∈ Rd. The
following result is well-known.

Proposition 2 ([9]). Let f be L-Lipschitz. Given an input x with the true label y. Suppose
y = arg maxj fj(x). If we have

Mf (x) := max(0, fy(x)−max
j 6=y

fj(x)) >
√

2Lε,

then for every τ satisfying ‖τ‖ ≤ ε, we must have arg maxj fj(x+ τ) = y. In other words, f
is certifiably robust at radius ε at the data point x.

A complete proof for the above result can be found in [9], and hence is skipped here.
Let’s just try to understand the above result. Here Mf (x) is the prediction margin of f
at the data point x. A large margin typically means that we are confident in the predicted
outcome for that data point. If the margin is quite small, it typically means that the classifier

1Let’s think about what happens in the first layer. If ‖W0‖ is large, a small perturbation τ can lead to
the change W0(x+ τ)−W0x = W0τ , which is going to be significant if τ is chosen carefully. Such an issue
exists for every layer, and the compounding effect is huge.

7-2



ECE 586 BH Lecture 7 — 09/12/2023 Fall 2023

is not that certain about the prediction result. The prediction margin has to be calculated
in a point-by-point manner. The above result just states that perturbation smaller than
Mf (x)/

√
2L cannot deceive f for datapoint x! If we can control the Lipschitz constant of

f and achieve good prediction margins at the same time, then certified robustness can be
ensured. This leads to the following approach for achieving certified robustness.

1. Constructing 1-Lipschitz layers: If each layer of a neural network is 1-Lipchitz, the
entire network is 1-Lipschitz (by chain rule). So one can parameterize 1-Lipschitz
neural networks via augmenting 1-Lipschitz layers and other 1-Lipschitz operations
(such as average pooling set up in some proper way).

2. Training: Use a training procedure to boost the prediction margin as much as possible
(typically one can modify the loss function to achieve this [5]). Boosting margins over
some data points can potentially reduce the clean accuracy over other points. There
is some trade-off here, and hence one needs to carefully tune the hyper-parameters.

3. Certification: For each data point in the testing set, we test whether Mf (x) >
√

2ε
(the network is parameterized to be 1-Lipschitz), and then count the percentage of the
data points that is guaranteed to be guarded for perturbation smaller than ε. This
gives us the so-called certified robust accuracy for that ε on a given data set (such as
CIFAR10/100 and TinyImageNet).

7.3 Lipschitz Neural Networks

The above certified robustness approach requires parameterizing 1-Lipschitz network layers.
We can clearly see that the spectral normalization method exactly follows this idea (we know
ReLU is 1-Lipschitz). Now we give a brief review of existing 1-Lipschitz layers.

• Spectral normalization [4, 2]: xk+1 = σ
(

1
‖Wk‖2

Wkxk + bk

)
• Orthogonal layers [8, 6, 11, 10]: xk+1 = σ(Wkxk + bk) with WT

k Wk = I (there are many
ways to parameterize Wk to satisfy WT

k Wk = I, and one popular approach is to use
Cayley transformation [8], i.e. setting Wk = (I − (Hk−HT

k ))(I +Hk−HT
k )−1 with Hk

being some unconstrained decision variable to be trained)

• Convex potential layer (CPL) [3]: xk+1 = xk − 2
‖Wk‖2

Wkσ(WT
k x+ bk)

• Almost-orthogonal layers (AOL) [5]: xk+1 = σ(Wkdiag(
∑

j |WT
k Wk|ij)−

1
2xk + bk)

CPL and AOL have both achieved very competitive results for certified robustness on
CIFAR10/100. However, the developments of these layers are done in a case-by-case manner.
Their derivations greatly differ, and strongly rely on deep expert insights. Next, we will
discuss how to use the robust control theory (more specifically, the quadratic constraint
approach) to unify existing 1-Lipschitz network layers and derive new network structures in
a routinized manner.

7-3



ECE 586 BH Lecture 7 — 09/12/2023 Fall 2023

7.4 Deriving Lipschitz Structures via Control Tools

We can think neural network layers as special cases of the Lur’e system that has been covered
in the previous lecture:

xk+1 = Akxk +Bkσ(Ckxk + bk). (7.2)

Clearly, (7.2) can cover various neural network structures if we choose (Ak, Bk, Ck) properly.
If Ak = 0 and Bk = I, then (7.2) becomes the standard feed-forward network. If we choose
Ak = I, then (7.2) reduces to the residual network. Now we can ask the question: How
can we choose (Ak, Bk, Ck) to ensure (7.2) is 1-Lipschitz (i.e. ‖x′k+1 − xk+1‖ ≤ ‖x′k − xk‖)?
This is actually a control problem. To see this, notice that (7.2) can be represented as the
feedback interconnection Fu(G,∆) as shown in 7.1.

G

∆

v

-

w

�

Figure 7.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

We can choose G as

xk+1 = Akxk +Bkwk

vk = Ckxk + bk

In addition, we set ∆ as wk = ∆(vk) = σ(vk). We have seen how the quadratic constraint
approach can be used to address such feedback interconnections in a unified manner. Now
we can just apply the same approach here.

To establish the 1-Lipschitz property, we need to show ‖x′k+1 − xk+1‖ ≤ ‖x′k − xk‖, where
{xk} and {x′k} are two arbitrary trajectories of (7.2). Notice that the following relation holds

x′k+1 − xk+1 = Ak(x′k − xk) +Bk (σ(Ckx
′
k + bk)− σ(Ckxk + bk)) (7.3)

If we treat x′k−xk as the state variable ξk from our previous lectures, then we can immediately
obtain the following result.

Theorem 7.1. Consider the Lur’e system (7.2). Suppose the following (incremental) quadratic
constraint holds for any (v, v′):[

v′ − v
σ(v′)− σ(v)

]T
Mk

[
v′ − v

σ(v′)− σ(v)

]
≥ 0. (7.4)

7-4



ECE 586 BH Lecture 7 — 09/12/2023 Fall 2023

If there exists P ≥ 0 such that[
AT

kPAk − P AT
kPBk

BT
k PAk BT

k PBk

]
+

[
Ck 0
0 I

]T
Mk

[
Ck 0
0 I

]
≤ 0, (7.5)

then we must have (x′k+1 − xk+1)
TP (x′k+1 − xk+1) ≤ (x′k − xk)TP (x′k − xk), where {xk} and

{x′k} are two arbitrary trajectories of (7.2).

From the above theorem, if (7.5) is feasible with P = I, then we immediately have
‖x′k+1 − xk+1‖ ≤ ‖x′k − xk‖. Hence (7.5) provides a general matrix condition for designing
1-Lipschitz network layers (such a control-theoretic network design approach was originally
proposed in [1]). The proof of the above theorem is straightforward. If (7.5) is feasible, we
must have[
x′k − xk
w′k − wk

]T [
AT

kPAk − P AT
kPBk

BT
k PAk BT

k PBk

] [
x′k − xk
w′k − wk

]
+

[
x′k − xk
w′k − wk

]T [
Ck 0
0 I

]T
Mk

[
Ck 0
0 I

] [
x′k − xk
w′k − wk

]
≤ 0.

From previous lectures, we know that the first term can be simplified and eventually rewritten
as (x′k+1 − xk+1)

TP (x′k+1 − xk+1)− (x′k − xk)TP (x′k − xk). In addition, the second term can
be simplified as[

x′k − xk
w′k − wk

]T [
Ck 0
0 I

]T
Mk

[
Ck 0
0 I

] [
x′k − xk
w′k − wk

]
=

[
v′k − vk

σ(v′k)− σ(vk)

]T
Mk

[
v′k − vk

σ(v′k)− σ(vk)

]
which has to be non-negative based on (7.4). Therefore, we must have (x′k+1−xk+1)

TP (x′k+1−
xk+1)− (x′k − xk)P (x′k − xk) ≤ 0. This leads to the desired conclusion.

How to choose Mk? It is well-known that ReLU is slope-restricted on [0, 1]. This is
similar to choosing m = 0 and L = 1 for the quadratic constraint covered in the previous
lecture. Since ReLU is applied in an entry-wise manner, we can choose any positive definite
diagonal matrix Λk and parameterize Mk as

Mk =

[
0 1
1 −2

]
⊗ Λk (7.6)

Substituting the above choice of MK and Pk = I to (7.5) leads to[
AT

kAk − I AT
kBk

BT
kAk BT

kBk

]
+

[
Ck 0
0 I

]T [
0 Λk

Λk −2Λk

] [
Ck 0
0 I

]
≤ 0. (7.7)

We can easily recover existing 1-Lipschitz layers using the above condition. If we choose
Ak = 0, Bk = I, and Ck = Wk, then (7.7) is feasible with Λk = I and Wk satisfying
‖Wk‖ ≤ 1. This recovers spectral normalization, orthogonal layers, and AOL. If we choose
Ak = I, Bk = − 2

‖Wk‖2
Wk, and Ck = WT

k , then (7.7) is feasible with Λk = 2
‖Wk‖2

I (verify this

yourself!). In the next lecture, we will apply (7.7) to derive more general layers. We will
also discuss various generalizations of the condition (7.7).

7-5



Bibliography

[1] A. Araujo, A. J. Havens, B. Delattre, A. Allauzen, and B. Hu. A unified algebraic
perspective on lipschitz neural networks. In The Eleventh International Conference on
Learning Representations, 2023.

[2] F. Farnia, J. Zhang, and D. Tse. Generalizable adversarial training via spectral nor-
malization. In International Conference on Learning Representations, 2019.

[3] L. Meunier, B. Delattre, A. Araujo, and A. Allauzen. A dynamical system perspective
for lipschitz neural networks. In International Conference on Machine Learning, 2022.

[4] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for gen-
erative adversarial networks. In International Conference on Learning Representations,
2018.

[5] B. Prach and C. H. Lampert. Almost-orthogonal layers for efficient general-purpose
lipschitz networks. In Computer Vision–ECCV 2022: 17th European Conference, 2022.

[6] S. Singla and S. Feizi. Skew orthogonal convolutions. In International Conference on
Machine Learning, 2021.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014.

[8] A. Trockman and J. Z. Kolter. Orthogonalizing convolutional layers with the cayley
transform. In International Conference on Learning Representations, 2021.

[9] Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. In Advances in Neural Information
Processing Systems, 2018.

[10] X. Xu, L. Li, and B. Li. Lot: Layer-wise orthogonal training on improving l2 certified
robustness. In Advances in Neural Information Processing Systems, 2022.

[11] T. Yu, J. Li, Y. Cai, and P. Li. Constructing orthogonal convolutions in an explicit
manner. In International Conference on Learning Representations, 2022.

6


