
ECE 586 BH: Interplay between Control and Machine Learning Fall 2023

Lecture 8
A Control Perspective on Certifiably Robust Neural Networks, Part II

Lecturer: Bin Hu, Date:09/14/2023

In the last lecture, we stated that the neural network layer xk+1 = Akxk +Bkσ(Ckxk +bk)
with σ being slope-restricted on [0, 1] is guaranteed to be 1-Lipschitz if there exists a diagonal
positive definite matrix Λk such that the following matrix inequality holds[

AT
kAk − I AT

kBk

BT
kAk BT

kBk

]
+

[
Ck 0
0 I

]T [
0 Λk

Λk −2Λk

] [
Ck 0
0 I

]
≤ 0. (8.1)

Therefore, designing 1-Lipschitz layers boils down to finding the right choice of (Ak, Bk, Ck,Λk).
In this lecture, we will apply (8.1) to design new 1-Lipschitz layers. We will also discuss how
to generalize (8.1).

8.1 SDP-Based Lipschitz Layers

We will start from the following result which was originally established in [1].

Theorem 8.1. For any weight matrix Wk ∈ Rm×n, if there exists a nonsingular diagonal
matrix Tk such that WT

k Wk ≤ Tk, then the two following statements hold true.

1. The mapping g(x) = WkT
− 1

2
k xk + bk is 1-Lipschitz.

2. The mapping h(x) = xk − 2WkT
−1
k σ(WT

k x + bk) is 1-Lipschitz if σ is ReLU, tanh or
sigmoid.

The proof of the first statement is straightforward, since g is affine in x. We have

‖g(x′k)− g(xk)‖2 = ‖WkT
− 1

2
k (x′k − xk)‖2 = (x′k − xk)TT

− 1
2

k WT
k WkT

− 1
2

k (x′k − xk).

Based on the condition WT
k Wk ≤ Tk, we have

‖g(x′k)− g(xk)‖2 ≤ (x′k − xk)TT
− 1

2
k TkT

− 1
2

k (x′k − xk) = ‖x′k − xk‖2.

Therefore, Statement 1 holds as desired. Based on Statement 1, for any 1-Lipschitz activation
functions (not necessarily being slope-restricted on [0, 1]), the feed-forward network layer

xk+1 = σ(WkT
− 1

2
k xk + bk) is 1-Lipschitz. As we discussed before, training such layers for

deep networks may experience the gradient vanishing issue, which can be addressed using
the residual layer from Statement 2. Next, we discuss the proof of Statement 2.

8-1



ECE 586 BH Lecture 8 — 09/14/2023 Fall 2023

Statement 2 can be proved using the general condition (8.1). Specifically, we set Ak = I,
Bk = −2WkT

−1
k , and Ck = WT

k . Then we substitute this choice of (Ak, Bk, Ck) into (8.1),
and obtain [

0 −2WkT
−1
k

−2T−1k WT
k 4T−1k WT

k WkT
−1
k

]
+

[
0 WkΛk

ΛkW
T
k −2Λk

]
≤ 0.

which is feasible with this choice of Λk = 2T−1k . To verify this, we substitute Λk = 2T−1k into
the above condition, and the left side becomes[

0 0
0 4T−1k WT

k WkT
−1
k − 4T−1k

]
,

which is negative semidefinite due to the fact WT
k Wk ≤ Tk. Therefore, (8.1) is feasible for the

choice of (Ak, Bk, Ck,Λk) = (I,−2WkT
−1
k ,WT

k , 2T
−1
k ), and the residual layer in Statement 2

is 1-Lipschitz.

Why is Theorem 8.1 useful? The condition WT
k Wk ≤ Tk is much simpler than the

general condition (8.1). If we try to directly use (8.1) to come up new choices of (Ak, Bk, Ck),
the coupling between these decision parameters can lead to complications. In contrast, if we
use the simplified condition WT

k Wk ≤ Tk, we can just choose Tk as a function of Wk, and
it is much easier to come up good choices of Tk. Overall, we can claim that the condition
WT

k Wk ≤ Tk is easier to solve analytically than the original general condition (8.1). For
example, we can re-derive existing 1-Lipschitz layers via using Theorem 8.1 and some trivial
linear algebra facts:

• Spectral normalization: We can choose Tk = ‖Wk‖2I ≥ WT
k Wk, and then apply State-

ment 1 to recover this technique.

• Orthogonal layer: We can choose Tk = I and enforce the equality WT
k Wk = Tk = I.

Based on Statement 1, the orthogonal layers are 1-Lipschitz.

• AOL: We can choose Tk = diag(
∑n

j=1 |WT
k Wk|ij), and then the matrix (Tk −WT

k Wk)
becomes a real symmetric diagonally dominant matrix with non-negative diagonal
entries. It is well known that such a matrix has to be positive semidefinite. Hence we
have WT

k Wk ≤ Tk, and Statement 1 can be directly applied to recover AOL.

• CPL: We can choose Tk = ‖Wk‖2I ≥ WT
k Wk (this is the same choice of Tk as used for

spectral normalization) and apply Statement 2 to recover this residual layer.

Notice that Tk is diagonal, and hence T−1k can be easily calculated and viewed as some scaling
matrix. Therefore, Theorem 8.1 is also easy-to-use from the computation perspective.

8-2



ECE 586 BH Lecture 8 — 09/14/2023 Fall 2023

Some new network structures. From Theorem 8.1, any choice of Tk satisfying WT
k Wk ≤

Tk immediately leads to two types of 1-Lipschitz layers. For example, for the choice of
Tk = ‖Wk‖2I, Statement 1 leads to the spectral normalization method, and Statement 2
leads to CPL. Now obviously, we can use the choices of Tk for orthogonal layers and AOL
to construct residual layer counterparts. This immediately leads to the following new 1-
Lipschitz residual layer structures:

• xk+1 = xk − 2Wkσ(WT
k xk + bk) with WT

k Wk = I

• xk+1 = xk − 2Wk diag(
∑n

j=1 |WT
k Wk|ij)−1σ(WT

k xk + bk)

In addition, one can further refine the choice of Tk and obtain even more expressive 1-
Lipschitz residual layers. See [1] for more examples.

Open questions. It is still unclear what is the best choice of Tk for the purpose of con-
structing 1-Lipschitz layers. The current choices from [1] achieve good certified robustness
results due to the scalability for the deep network case. However, it is possible that there
are other SDP solutions which will lead to more expressive 1-Lipschitz layers. In general, it
is also possible to directly construct new layer structures from (8.1). In Homework 2, you
will see one such example which uses a different solution of (8.1) (which has nothing to do
with Theorem 8.1) to achieve competitive certified robustness results on TinyImageNet (see
[4] for detailed discussions).

8.2 End-to-End Analysis for Multi-Layer Networks

In this section, we discuss how to generalize (8.1) for multi-layer networks. For simplicity,
consider a two-layer network satisfying x1 = A0x0 + B0σ(C0x0 + b0), and x2 = A1x1 +
B1σ(C1x1 + b1). To show such a network is 1-Lipschitz, we can apply (8.1) to each layer and
then use the chain rule. Is there a better way of doing things? As a matter of fact, we can
formulate an end-to-end SDP to directly ensure ‖x′2 − x2‖ ≤ ‖x′0 − x0‖ without worrying
about what is going on in the middle layer. In other words, we do not care about whether
we have ‖x′1 − x1‖ ≤ ‖x′0 − x0‖. We can allow ‖x′1 − x1‖ > ‖x′0 − x0‖ but need to ensure
‖x′2 − x2‖ ≤ ‖x′0 − x0‖ in the end. Such an end-to-end approach is less conservative than
the naive chain rule approach.

Now we will reverse engineer an end-to-end SDP ensuring ‖x′2 − x2‖ ≤ ‖x′0 − x0‖. Denote
w0 = σ(C0x0 + b0) and w1 = σ(C1x1 + b1). Suppose σ is slope-restricted over [0, 1]. This
property ensures the following quadratic inequalities[

C0(x
′
0 − x0)

w′0 − w0

]T [
0 Λ0

Λ0 −2Λ0

] [
C0(x

′
0 − x0)

w′0 − w0

]
≥ 0,[

C1(x
′
1 − x1)

w′1 − w1

]T [
0 Λ1

Λ1 −2Λ1

] [
C1(x

′
1 − x1)

w′1 − w1

]
≥ 0.

8-3



ECE 586 BH Lecture 8 — 09/14/2023 Fall 2023

Therefore, to ensure ‖x′2 − x2‖ ≤ ‖x′0 − x0‖, we only need some matrix inequality that can
lead to

‖x′2 − x2‖2 − ‖x′0 − x0‖2

+

[
C0(x

′
0 − x0)

w′0 − w0

]T [
0 Λ0

Λ0 −2Λ0

] [
C0(x

′
0 − x0)

w′0 − w0

]
+

[
C1(x

′
1 − x1)

w′1 − w1

]T [
0 Λ1

Λ1 −2Λ1

] [
C1(x

′
1 − x1)

w′1 − w1

]
≤ 0

If we can rewrite all the four terms on the left side of the above inequality in the following
form: x′0 − x0w′0 − w0

w′1 − w1

T

Mi

x′0 − x0w′0 − w0

w′1 − w1


Then a SDP condition

∑4
i=1Mi ≤ 0 can ensure the above desired inequality. Now let’s figure

out Mi. Notice x2 = A1(A0x0 +B0w0) +B1w1 = A1A0x0 + A1B0w0 +B1w1. We have

‖x′2 − x2‖2 =

x′0 − x0w′0 − w0

w′1 − w1

T AT
0A

T
1

BT
0 A1

BT
1

 [A1A0 A1B0 B1

] x′0 − x0w′0 − w0

w′1 − w1


−‖x′0 − x0‖2 =

x′0 − x0w′0 − w0

w′1 − w1

T −I 0 0
0 0 0
0 0 0

x′0 − x0w′0 − w0

w′1 − w1


Obviously, we have

M1 =

AT
0A

T
1

BT
0 A1

BT
1

 [A1A0 A1B0 B1

]

M2 =

−I 0 0
0 0 0
0 0 0


Similarly, we can figure out M3 and M4:

M3 =

[
C0 0 0
0 I 0

]T [
0 Λ0

Λ0 −2Λ0

] [
C0 0 0
0 I 0

]
M4 =

[
C1A0 C1B0 0

0 0 I

]T [
0 Λ1

Λ1 −2Λ1

] [
C1A0 C1B0 0

0 0 I

]
With the above choice of (M1,M2,M3,M4), we can formulate the end-to-end SDP. If there
exist diagonal positive definite matrices (Λ0,Λ1) such that

∑4
i=1Mi ≤ 0, then we have

‖x′2 − x2‖ ≤ ‖x′0 − x0‖. Sometimes the resultant SDP condition can be further simplified.

8-4



ECE 586 BH Lecture 8 — 09/14/2023 Fall 2023

Exercise. Can we simplify the SDP when the network is feed-forward, i.e. A1 = A0 = 0
and B1 = B0 = I? Compare what you get to [2, Theorem 2]. Are the results the same?
(Hint: One can merge M3 +M4 as

M3 +M4 =


C0 0 0
C1A0 C1B0 0

0 I 0
0 0 I


T 

0 0 Λ0 0
0 0 0 Λ1

Λ0 0 −2Λ0 0
0 Λ1 0 −2Λ1



C0 0 0
C1A0 C1B0 0

0 I 0
0 0 I



=


C0 0 0
C1A0 C1B0 0

0 I 0
0 0 I


T([

0 1
1 −2

]
⊗
[
Λ0 0
0 Λ1

])
C0 0 0
C1A0 C1B0 0

0 I 0
0 0 I


Then use A1 = A0 = 0 and B1 = B0 = I to simplify the expressions.)

Networks with arbitrary depth. The above analysis can be generalized to neural net-
works with arbitrary depth. Suppose xk+1 = Akxk + Bkσ(Ckxk + bk), and we want to show
‖x′k+1 − xk+1‖ ≤ ‖x′0 − x0‖. Denote wk = σ(Ckxk + bk) for all k. Then we can express
xk+1 as a linear combination of x0 and {wi}ki=0. Consequently, we can use a similar reverse
engineering approach to derive an end-to-end SDP via manipulating terms in the following
quadratic form: 

x′0 − x0
w′0 − w0

w′1 − w1
...

w′k − wk


T

Mi


x′0 − x0
w′0 − w0

w′1 − w1
...

w′k − wk

 .

A detailed derivation is skipped and left as an exercise problem (we will discuss this in class).

8.3 More Discussions

Finally, it is beneficial to briefly mention several other useful generalizations of (8.1). Notice
(8.1) was derived for `2 perturbations. The argument can be modified to give a SDP condi-
tion for Lipschitz bounds under `∞ perturbations. See [5] for more details. The quadratic
constraint approach can also be used to address implicit learning models such as deep equi-
librium models. See [3] for such results.

8-5



Bibliography

[1] A. Araujo, A. J. Havens, B. Delattre, A. Allauzen, and B. Hu. A unified algebraic
perspective on lipschitz neural networks. In The Eleventh International Conference on
Learning Representations, 2023.

[2] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate es-
timation of lipschitz constants for deep neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

[3] M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks.
arXiv preprint arXiv:2010.01732, 2020.

[4] R. Wang and I. Manchester. Direct parameterization of lipschitz-bounded deep networks.
In International Conference on Machine Learning, pages 36093–36110, 2023.

[5] Z. Wang, G. Prakriya, and S. Jha. A quantitative geometric approach to neural-network
smoothness. In Advances in Neural Information Processing Systems, 2022.

6


