
ECE586BH: Interplay between Control and Machine Learning Fall 2023

Solutions for Homework 2

1.

(a) Setting Ak = I, Bk = − 2
∥Wk∥2

Wk and Ck = WT
k , the left side of our matrix inequality

condition becomes [
0 − 2

∥Wk∥2
Wk +WkΛk

− 2
∥Wk∥2

WT
k + ΛkW

T
k

4
∥Wk∥4

WT
k Wk − 2Λk

]
.

To make the above matrix negative semi-definite, we can set Λk =
2

∥Wk∥2
I. Then we have[

0 0
0 4

∥Wk∥4
WT

k Wk − 4
∥Wk∥2

I

]
⪯

[
0 0
0 4

∥Wk∥2
I − 4

∥Wk∥2
I

]
= 0.

In the above argument, we use the fact that WT
k Wk ⪯ ∥Wk∥2I.

(b) Set Ak = I, Bk = −2Wk and Ck = WT
k . The left side of our matrix inequality

condition becomes [
0 −2Wk +WkΛk

−2WT
k + ΛkW

T
k 4WT

k Wk − 2Λk

]
.

Setting Λk = 2I, and using that the fact that WT
k Wk = I, the above matrix becomes the

zero matrix which is negative semidefinite.

(c) Set Ak = I, Bk = −2WkT
−1
k and Ck = WT

k where Tk := diag (
∑n

j=1 |WT
k Wk|i,j). The

left side of our matrix inequality condition becomes[
0 −2WkT

−1
k +WkΛk

−2T−1
k WT

k + ΛkW
T
k 4T−1

k WT
k WkT

−1
k − 2Λk

]
.

We can choose Λk = 2T−1
k . The above matrix becomes[

0 0
0 4T−1

k WT
k WkT

−1
k − 4T−1

k

]
.

Note that WT
k Wk ⪯ Tk. This is because Tk − WT

k Wk is diagonally dominant by our
choice of Tk and, by the Gershgorin circle criterion, its eigenvalues must be localized to
the left-hand complex plane (in fact, they are real negative values since our matrix is real
symmetric). Therefore we have T−1

k WT
k WkT

−1
k ⪯ T−1

k , and the above matrix is negative
semidefinite based on the following argument:
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[
0 0
0 4T−1

k WT
k WkT

−1
k − 4T−1

k

]
⪯

[
0 0
0 4T−1

k − 4T−1
k

]
= 0.

(d) Setting Ak = 0, Bk =
√
2MT

k Ψk and Ck =
√
2Ψ−1

k Nk gives us the matrix inequality[
−I

√
2NT

k Ψ
−1
k Λk√

2ΛkΨ
−1
k Nk 2ΨkMkM

T
k Ψk − 2Λk

]
⪯ 0,

which is equivalent to the following condition via Schur complement

2ΨkMkM
T
k Ψk + 2ΛkΨ

−1
k NkN

T
k Ψ

−1
k Λk ⪯ 2Λk.

By setting Λk = Ψ2
k and multiplying by Ψ−1

k on both sides, we obtain

MkM
T
k +NkN

T
k ⪯ I.

Since MkM
T
k +NkN

T
k = I by assumption, the matrix inequality is satisfied.

2

Suppose we have solutions z = σ(Wz + Ux + bz) and z′ = σ(Wz′ + Ux′ + bz). We can
lump the input values into a single vector y given by:

y :=
[
W U

] [z
x

]
Then, it is straight-forward to use the slope-restricted quadratic constraint of σ to obtain

the inequality:

0 ≤
[

y − y′

σ(y + bz)− σ(y′ + bz)

]T [
0 Λ
Λ −2Λ

] [
y − y′

σ(y + bz)− σ(y′ + bz)

]
=

[
z − z′

x− x′

]T [
W U
I 0

]T [
0 Λ
Λ −2Λ

] [
W U
I 0

] [
z − z′

x− x′

]
.

where Λ is a diagonal positive definite matrix. Since we know that

∥z − z′∥2 − L2∥x− x′∥2 =
[
z − z′

x− x′

]T [
I 0
0 −L2I

] [
z − z′

x− x′

]
,
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then the following the matrix inequality will guarantee L-Lipschitzness from x to z:[
W U
I 0

]T [
0 Λ
Λ −2Λ

] [
W U
I 0

]
+

[
I 0
0 −L2I

]
⪯ 0

.

3

(a) Our safe set {x : ∥x− x∗∥ ≥ 3} is given as the zero-superlevel set of the following
function h (we squared the inequality to make sure h is differentiable):

h(x) = ∥x− x∗∥2 − 9

Then the CBF condition is given for some extended class K function (strictly increasing and
α(0) = 0).

sup
u∈U

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u

}
≥ −α(h(x))

Then given our baseline controller u = K(x), we can project to a controller Ksafe(x) satis-
fying the CBF condition given by the solution to following quadratic program (QP)

Ksafe(x) = argmin
u∈U

1

2
∥u−K(x)∥2

s.t.
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u ≥ −α(h(x)),

noting that the constraint on u is linear. and assuming that the control set is U is also
described by a linear constraint, it can be readily solved using a QP-solver given that it is
feasible.

(b) Now we have some measurement uncertainty, but we know that for a given measure-
ment x̂, the true measurement is contained in the set X (x̂) = {x : ∥x− x̂∥ ≤ r}. The robust
CBF condition with respect to X is given by

sup
u∈U

inf
x∈X (x̂)

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
≥ 0.

We can seek the following relaxation of the condition that depends on x̂ and u.

M(x̂, u) ≤ inf
x∈X (x̂

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
.

Once that is obtained, we can simply solve the following optimization problem to project
our baseline controller K(x̂).

Ksafe(x̂) = argmin
u∈U

1

2
∥u−K(x̂)∥2

s.t. M(x̂, u) ≥ 0
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To obtain M (similarly to the notes in lecture 10), we will require that the functions
∂h
∂x

· f and ∂h
∂x

· g are Lf -Lipschitz and Lg-Lipschitz respectively. We can now lower-bound
∂h
∂x

· f at any point x ∈ X (x̂) with

∂h

∂x
(x)f(x) ≥ ∂h

∂x
(x̂)f(x̂)− Lfr

and similarly for ∂h
∂x

· g, for any u ∈ U .

∂h

∂x
(x)g(x)u ≥ ∂h

∂x
(x̂)g(x̂)u− Lgr∥u∥

Finally, we consider the extended class K function term α(h(x̂)). We can simply lower-
bound it by a function α̃(h(x)) := infx∈X (x̂) α(h(x)). Combining these bound, we can define
lower-bound M by

M(x̂, u) =
∂h

∂x
(x̂)f(x̂) +

∂h

∂x
(x̂)g(x̂)u− (Lf + Lg∥u∥)r + α̃(h(x̂))

We can use this constraint to formulate a SOCP, (not quite a QP since ∥u∥ enters the
constraint), adding a slack variable δ for some large fixed p > 0 to improve feasibility in
practice.

Ksafe(x̂) = argmin
u∈U ,δ>0

1

2
∥u−K(x̂)∥2 + pδ2

s.t. M(x̂, u) + δ ≥ 0
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