1.

(a) Setting $A_{k}=I, B_{k}=-\frac{2}{\left\|W_{k}\right\|^{2}} W_{k}$ and $C_{k}=W_{k}^{\top}$, the left side of our matrix inequality condition becomes

$$
\left[\begin{array}{cc}
0 & -\frac{2}{\left\|W_{k}\right\|^{2}} W_{k}+W_{k} \Lambda_{k} \\
-\frac{2}{\left\|W_{k}\right\|^{2}} W_{k}^{\top}+\Lambda_{k} W_{k}^{\top} & \frac{4}{\left\|W_{k}\right\|^{4}} W_{k}^{\top} W_{k}-2 \Lambda_{k}
\end{array}\right] .
$$

To make the above matrix negative semi-definite, we can set $\Lambda_{k}=\frac{2}{\left\|W_{k}\right\|^{2}} I$. Then we have

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{4}{\left\|W_{k}\right\|^{4}} W_{k}^{\top} W_{k}-\frac{4}{\left\|W_{k}\right\|^{2}} I
\end{array}\right] \preceq\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{4}{\left\|W_{k}\right\|^{2}} I-\frac{4}{\left\|W_{k}\right\|^{2}} I
\end{array}\right]=0 .
$$

In the above argument, we use the fact that $W_{k}^{\top} W_{k} \preceq\left\|W_{k}\right\|^{2} I$.
(b) Set $A_{k}=I, B_{k}=-2 W_{k}$ and $C_{k}=W_{k}^{\top}$. The left side of our matrix inequality condition becomes

$$
\left[\begin{array}{cc}
0 & -2 W_{k}+W_{k} \Lambda_{k} \\
-2 W_{k}^{\top}+\Lambda_{k} W_{k}^{\top} & 4 W_{k}^{\top} W_{k}-2 \Lambda_{k}
\end{array}\right] .
$$

Setting $\Lambda_{k}=2 I$, and using that the fact that $W_{k}^{\top} W_{k}=I$, the above matrix becomes the zero matrix which is negative semidefinite.
(c) Set $A_{k}=I, B_{k}=-2 W_{k} T_{k}^{-1}$ and $C_{k}=W_{k}^{\top}$ where $T_{k}:=\operatorname{diag}\left(\sum_{j=1}^{n}\left|W_{k}^{\top} W_{k}\right|_{i, j}\right)$. The left side of our matrix inequality condition becomes

$$
\left[\begin{array}{cc}
0 & -2 W_{k} T_{k}^{-1}+W_{k} \Lambda_{k} \\
-2 T_{k}^{-1} W_{k}^{\top}+\Lambda_{k} W_{k}^{\top} & 4 T_{k}^{-1} W_{k}^{\top} W_{k} T_{k}^{-1}-2 \Lambda_{k}
\end{array}\right]
$$

We can choose $\Lambda_{k}=2 T_{k}^{-1}$. The above matrix becomes

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & 4 T_{k}^{-1} W_{k}^{\top} W_{k} T_{k}^{-1}-4 T_{k}^{-1}
\end{array}\right]
$$

Note that $W_{k}^{\top} W_{k} \preceq T_{k}$. This is because $T_{k}-W_{k}^{\top} W_{k}$ is diagonally dominant by our choice of T_{k} and, by the Gershgorin circle criterion, its eigenvalues must be localized to the left-hand complex plane (in fact, they are real negative values since our matrix is real symmetric). Therefore we have $T_{k}^{-1} W_{k}^{\top} W_{k} T_{k}^{-1} \preceq T_{k}^{-1}$, and the above matrix is negative semidefinite based on the following argument:

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & 4 T_{k}^{-1} W_{k}^{\top} W_{k} T_{k}^{-1}-4 T_{k}^{-1}
\end{array}\right] \preceq\left[\begin{array}{cc}
0 & 0 \\
0 & 4 T_{k}^{-1}-4 T_{k}^{-1}
\end{array}\right]=0 .
$$

(d) Setting $A_{k}=0, B_{k}=\sqrt{2} M_{k}^{\top} \Psi_{k}$ and $C_{k}=\sqrt{2} \Psi_{k}^{-1} N_{k}$ gives us the matrix inequality

$$
\left[\begin{array}{cc}
-I & \sqrt{2} N_{k}^{\top} \Psi_{k}^{-1} \Lambda_{k} \\
\sqrt{2} \Lambda_{k} \Psi_{k}^{-1} N_{k} & 2 \Psi_{k} M_{k} M_{k}^{\top} \Psi_{k}-2 \Lambda_{k}
\end{array}\right] \preceq 0,
$$

which is equivalent to the following condition via Schur complement

$$
2 \Psi_{k} M_{k} M_{k}^{\top} \Psi_{k}+2 \Lambda_{k} \Psi_{k}^{-1} N_{k} N_{k}^{\top} \Psi_{k}^{-1} \Lambda_{k} \preceq 2 \Lambda_{k} .
$$

By setting $\Lambda_{k}=\Psi_{k}^{2}$ and multiplying by Ψ_{k}^{-1} on both sides, we obtain

$$
M_{k} M_{k}^{\top}+N_{k} N_{k}^{\top} \preceq I .
$$

Since $M_{k} M_{k}^{\top}+N_{k} N_{k}^{\top}=I$ by assumption, the matrix inequality is satisfied.

2

Suppose we have solutions $z=\sigma\left(W z+U x+b_{z}\right)$ and $z^{\prime}=\sigma\left(W z^{\prime}+U x^{\prime}+b_{z}\right)$. We can lump the input values into a single vector y given by:

$$
y:=\left[\begin{array}{ll}
W & U
\end{array}\right]\left[\begin{array}{l}
z \\
x
\end{array}\right]
$$

Then, it is straight-forward to use the slope-restricted quadratic constraint of σ to obtain the inequality:

$$
\begin{aligned}
0 & \leq\left[\begin{array}{c}
y-y^{\prime} \\
\sigma\left(y+b_{z}\right)-\sigma\left(y^{\prime}+b_{z}\right)
\end{array}\right]^{\top}\left[\begin{array}{cc}
0 & \Lambda \\
\Lambda & -2 \Lambda
\end{array}\right]\left[\begin{array}{c}
y-y^{\prime} \\
\sigma\left(y+b_{z}\right)-\sigma\left(y^{\prime}+b_{z}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
z-z^{\prime} \\
x-x^{\prime}
\end{array}\right]^{\top}\left[\begin{array}{cc}
W & U \\
I & 0
\end{array}\right]^{\top}\left[\begin{array}{cc}
0 & \Lambda \\
\Lambda & -2 \Lambda
\end{array}\right]\left[\begin{array}{cc}
W & U \\
I & 0
\end{array}\right]\left[\begin{array}{c}
z-z^{\prime} \\
x-x^{\prime}
\end{array}\right] .
\end{aligned}
$$

where Λ is a diagonal positive definite matrix. Since we know that

$$
\left\|z-z^{\prime}\right\|^{2}-L^{2}\left\|x-x^{\prime}\right\|^{2}=\left[\begin{array}{c}
z-z^{\prime} \\
x-x^{\prime}
\end{array}\right]^{\top}\left[\begin{array}{cc}
I & 0 \\
0 & -L^{2} I
\end{array}\right]\left[\begin{array}{c}
z-z^{\prime} \\
x-x^{\prime}
\end{array}\right],
$$

then the following the matrix inequality will guarantee L-Lipschitzness from x to z :

$$
\left[\begin{array}{cc}
W & U \\
I & 0
\end{array}\right]^{\top}\left[\begin{array}{cc}
0 & \Lambda \\
\Lambda & -2 \Lambda
\end{array}\right]\left[\begin{array}{cc}
W & U \\
I & 0
\end{array}\right]+\left[\begin{array}{cc}
I & 0 \\
0 & -L^{2} I
\end{array}\right] \preceq 0
$$

3
(a) Our safe set $\left\{x:\left\|x-x^{*}\right\| \geq 3\right\}$ is given as the zero-superlevel set of the following function h (we squared the inequality to make sure h is differentiable):

$$
h(x)=\left\|x-x^{*}\right\|^{2}-9
$$

Then the CBF condition is given for some extended class \mathcal{K} function (strictly increasing and $\alpha(0)=0)$.

$$
\sup _{u \in \mathcal{U}}\left\{\frac{\partial h}{\partial x}(x) f(x)+\frac{\partial h}{\partial x}(x) g(x) u\right\} \geq-\alpha(h(x))
$$

Then given our baseline controller $u=K(x)$, we can project to a controller $K_{\text {safe }}(x)$ satisfying the CBF condition given by the solution to following quadratic program (QP)

$$
\begin{aligned}
K_{\text {safe }}(x) & =\underset{u \in \mathcal{U}}{\arg \min } \frac{1}{2}\|u-K(x)\|^{2} \\
\text { s.t. } & \frac{\partial h}{\partial x}(x) f(x)+\frac{\partial h}{\partial x}(x) g(x) u \geq-\alpha(h(x))
\end{aligned}
$$

noting that the constraint on u is linear. and assuming that the control set is \mathcal{U} is also described by a linear constraint, it can be readily solved using a QP-solver given that it is feasible.
(b) Now we have some measurement uncertainty, but we know that for a given measurement \hat{x}, the true measurement is contained in the set $\mathcal{X}(\hat{x})=\{x:\|x-\hat{x}\| \leq r\}$. The robust CBF condition with respect to \mathcal{X} is given by

$$
\sup _{u \in \mathcal{U}} \inf _{x \in \mathcal{X}(\hat{x})}\left\{\frac{\partial h}{\partial x}(x) f(x)+\frac{\partial h}{\partial x}(x) g(x) u+\alpha(h(x))\right\} \geq 0 .
$$

We can seek the following relaxation of the condition that depends on \hat{x} and u.

$$
M(\hat{x}, u) \leq \inf _{x \in \mathcal{X}(\hat{x}}\left\{\frac{\partial h}{\partial x}(x) f(x)+\frac{\partial h}{\partial x}(x) g(x) u+\alpha(h(x))\right\}
$$

Once that is obtained, we can simply solve the following optimization problem to project our baseline controller $K(\hat{x})$.

$$
\begin{aligned}
K_{\text {safe }}(\hat{x}) & =\underset{u \in \mathcal{U}}{\arg \min } \frac{1}{2}\|u-K(\hat{x})\|^{2} \\
\text { s.t. } & M(\hat{x}, u) \geq 0
\end{aligned}
$$

To obtain M (similarly to the notes in lecture 10), we will require that the functions $\frac{\partial h}{\partial x} \cdot f$ and $\frac{\partial h}{\partial x} \cdot g$ are L_{f}-Lipschitz and L_{g}-Lipschitz respectively. We can now lower-bound $\frac{\partial \hbar}{\partial x} \cdot f$ at any point $x \in \mathcal{X}(\hat{x})$ with

$$
\frac{\partial h}{\partial x}(x) f(x) \geq \frac{\partial h}{\partial x}(\hat{x}) f(\hat{x})-L_{f} r
$$

and similarly for $\frac{\partial h}{\partial x} \cdot g$, for any $u \in \mathcal{U}$.

$$
\frac{\partial h}{\partial x}(x) g(x) u \geq \frac{\partial h}{\partial x}(\hat{x}) g(\hat{x}) u-L_{g} r\|u\|
$$

Finally, we consider the extended class \mathcal{K} function term $\alpha(h(\hat{x}))$. We can simply lowerbound it by a function $\tilde{\alpha}(h(x)):=\inf _{x \in \mathcal{X}(\hat{x})} \alpha(h(x))$. Combining these bound, we can define lower-bound M by

$$
M(\hat{x}, u)=\frac{\partial h}{\partial x}(\hat{x}) f(\hat{x})+\frac{\partial h}{\partial x}(\hat{x}) g(\hat{x}) u-\left(L_{f}+L_{g}\|u\|\right) r+\tilde{\alpha}(h(\hat{x}))
$$

We can use this constraint to formulate a SOCP, (not quite a QP since $\|u\|$ enters the constraint), adding a slack variable δ for some large fixed $p>0$ to improve feasibility in practice.

$$
\begin{aligned}
K_{\text {safe }}(\hat{x})= & \underset{u \in \mathcal{U}, \delta>0}{\arg \min } \frac{1}{2}\|u-K(\hat{x})\|^{2}+p \delta^{2} \\
\text { s.t. } & M(\hat{x}, u)+\delta \geq 0
\end{aligned}
$$

