ECE586BH: Interplay between Control and Machine Learning Fall 2023
Solutions for Homework 2

1.

(a) Setting Ay = I, By, =
condition becomes

‘W Ak W, and C), = W,;r , the left side of our matrix inequality

0 HW AR =W + WA
Wk + Aka WI;I—Wk 2A;,

IIW Wi lI? ||WkH4

To make the above matrix negative semi-definite, we can set Ay = ===I. Then we have

IIW AR

[O 0 } = [O 0 } 0
T 4 ) 4 4 — U.
0 Wi We = el — [0 I- I

AR AR
In the above argument, we use the fact that W,J Wy < ||W||*1.

(b) Set Ay, = I, By = —2W,, and C, = W,. The left side of our matrix inequality
condition becomes

0 —2W,, + Wi Ay,
—2WT + AW AW, — 2A, |

Setting Ay = 2I, and using that the fact that W] W}, = I, the above matrix becomes the
zero matrix which is negative semidefinite.

(c) Set Ay, = I, By = —2W, T, " and C), = W[ where T}, := diag(z:?:1 W/ Wyli;). The
left side of our matrix inequality condition becomes

0 —2Wi Tt + WAy
2T "W+ MW, AT WIWL T — 24|

We can choose Ay, = 27} ! The above matrix becomes

0 0
{0 AT WIW T — 4T,;1} '

Note that W W, < Ty. This is because T, — W,JW}, is diagonally dominant by our
choice of T} and, by the Gershgorin circle criterion, its eigenvalues must be localized to
the left-hand complex plane (in fact, they are real negative values since our matrix is real
symmetric). Therefore we have T} 1I/VkT Wi,T,” 1< T_ , and the above matrix is negative
semidefinite based on the followmg argument:
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0 0 _ o 0 .
0 AT, '"WIW, T, — 4Tt — |0 4T, ' —4TH| —

(d) Setting Ay, =0, By = \/§Ml;r\lfk and C} = \/5\11,;1Nk gives us the matrix inequality

{ —1 V2NTW A,

~

which is equivalent to the following condition via Schur complement
2U ) My MT Wy, + 20,0 PN N W A, <24,
By setting Ay = U7 and multiplying by \I/,zl on both sides, we obtain
MM + NN < 1.

Since MM, + Ny N,' = I by assumption, the matrix inequality is satisfied.

2

Suppose we have solutions z = o(Wz + Uz +b,) and 2’ = o(Wz2' + Uz’ +b.). We can
lump the input values into a single vector y given by:

- ]

Then, it is straight-forward to use the slope-restricted quadratic constraint of o to obtain
the inequality:

O<Lme§—%yﬁ@JWX-QJ{dyu§—§y+@J
o A R e | A b

where A is a diagonal positive definite matrix. Since we know that

i
o2 2. oz |2 I 0 z—2
== - 2le-ae= 22V [ 0| [223]
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then the following the matrix inequality will guarantee L-Lipschitzness from x to z:

T ST SR ] =0

3

(a) Our safe set {x : ||x — z*|| > 3} is given as the zero-superlevel set of the following
function h (we squared the inequality to make sure h is differentiable):

h(z) = [z —2*[* - 9

Then the CBF condition is given for some extended class K function (strictly increasing and
a(0) = 0).

sup
ueld

{1+ @t} > ~ai(o)

Then given our baseline controller u = K (z), we can project to a controller Ky, () satis-
fying the CBF condition given by the solution to following quadratic program (QP)

1
Kofe(x) = argmin —|lu — K(ZL‘)||2
ueU 2

oh oh
st So(@) () + (g > —alh(z),
noting that the constraint on u is linear. and assuming that the control set is U is also
described by a linear constraint, it can be readily solved using a QP-solver given that it is
feasible.

(b) Now we have some measurement uncertainty, but we know that for a given measure-
ment Z, the true measurement is contained in the set X'(z) = {x : ||z — Z|| <r}. The robust
CBF condition with respect to X’ is given by

h h
sup int {TL0)/(0) + G la)u+alh(e) } =0
We can seek the following relaxation of the condition that depends on 2 and w.

5o @) + G @ty + alhia) }.

Once that is obtained, we can simply solve the following optimization problem to project
our baseline controller K (z).

zeX (T

M(z,u) < inf {

1
Kope(#) = arg min 5 [Ju — K (2)|*
ueU 2

st. M(z,u) >0
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To obtain M (similarly to the notes in lecture 10), we will require that the functions

% - f and % - g are Ly-Lipschitz and Lg-Lipschitz respectively. We can now lower-bound
8—72 - [ at any point x € X (&) with

oh oh

(@) 2 S (@) (E) — Lyr

and similarly for % - g, for any u € U.

O gty > T (@)glayu— Lyr|ul

Finally, we consider the extended class I function term a(h(z)). We can simply lower-
bound it by a function &(h(x)) := inf,cx ) a(h(z)). Combining these bound, we can define
lower-bound M by

= 55 O (@) + 5 (2)g(2)u — (Lg + Ly[Jull)r + a(h(3))

We can use this constraint to formulate a SOCP, (not quite a QP since |lu|| enters the
constraint), adding a slack variable § for some large fixed p > 0 to improve feasibility in
practice.

1
Koage(#) = axgmin = [lu — K (3)]> + po?

u€eU,6>0
st. M(Z,u)+d>0
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