1. (a) For any matrix X, we have $X \leq 0$ if and only if $X \otimes I \leq 0$. Therefore, the LMI condition (1) in the problem statement is feasible if and only if the following condition is feasible

$$
\left[\begin{array}{cc}
\left(1-\rho^{2}\right) I & -\alpha I \\
-\alpha I & \alpha^{2} I
\end{array}\right]-\lambda_{1}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]-\lambda_{2}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right] \leq 0
$$

We can left and right multiply the above condition with $\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]^{\top}$ and $\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]$. This leads to

$$
\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left(\left[\begin{array}{cc}
\left(1-\rho^{2}\right) I & -\alpha I \\
-\alpha I & \alpha^{2} I
\end{array}\right]-\lambda_{1}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]-\lambda_{2}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right]\right)\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right] \leq 0
$$

Substituting the fact $\left\|x_{k+1}-x^{*}\right\|^{2}-\rho^{2}\left\|x_{k}-x^{*}\right\|^{2}=\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]^{\top}\left[\begin{array}{cc}\left(1-\rho^{2}\right) I & -\alpha I \\ -\alpha I & \alpha^{2} I\end{array}\right]\left[\begin{array}{c}x_{k}-x^{*} \\ w_{k}\end{array}\right]$ into the above inequality, we get

$$
\begin{aligned}
& \left\|x_{k+1}-x^{*}\right\|^{2}-\rho^{2}\left\|x_{k}-x^{*}\right\|^{2} \leq \\
& \lambda_{1}\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left[\begin{array}{cc}
-2 L^{2} I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 m I & -I \\
-I & 0
\end{array}\right]\left[\begin{array}{c}
x_{k}-x^{*} \\
w_{k}
\end{array}\right]
\end{aligned}
$$

Now we can take expectation of the above inequality and apply the two supply rate conditions given in the problem statement to show

$$
\begin{aligned}
\mathbb{E}\left\|x_{k+1}-x^{*}\right\|^{2} & \leq \rho^{2} \mathbb{E}\left\|x_{k}-x^{*}\right\|^{2}+\lambda_{1} M \\
& \leq \rho^{4} \mathbb{E}\left\|x_{k-1}-x^{*}\right\|^{2}+\left(1+\rho^{2}\right) \lambda_{1} M \\
& \leq \rho^{2 k} \mathbb{E}\left\|x_{0}-x^{*}\right\|+\left(\sum_{t=0}^{\infty} \rho^{2 t}\right) \lambda_{1} M \\
& =\rho^{2 k} \mathbb{E}\left\|x_{0}-x^{*}\right\|+\frac{\lambda_{1} M}{1-\rho^{2}}
\end{aligned}
$$

This completes the proof.
(b) We can choose $\lambda_{1}=\alpha^{2}, \lambda_{2}=\alpha$, and $\rho^{2}=1-2 m \alpha+2 L^{2} \alpha^{2}$ to make the LMI condition (1) feasible. In this case, the left side of the LMI condition (1) becomes a zero matrix. Then the desired conclusion directly follows.
(c) A matrix X is positive semidefinite if and only if $X \otimes I_{p} \geq 0$. Therefore, we can get rid of the Kronecker product with I_{p} in our LMI implementation. For SAGA, we can set the matrices as

$$
A_{i}=\left[\begin{array}{cc}
I_{n}-e_{i} e_{i}^{\top} & 0_{n \times 1} \\
-\frac{\alpha}{n}\left(e-n e_{i}\right)^{\top} & 1
\end{array}\right], \quad B_{i}=\left[\begin{array}{c}
e_{i} e_{i}^{\top} \\
-\alpha e_{i}^{\top}
\end{array}\right], C=\left[\begin{array}{ll}
0_{1 \times n} & 1
\end{array}\right]
$$

For this problem, we have $n=5$. For $j=1, \ldots, 5$, since f_{i} is L-smooth and m-strongly convex, we choose M_{j} as

$$
M_{j}=\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & e_{j}^{\top}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 m L & -(m+L) \\
-(m+L) & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0_{1 \times n} \\
0 & e_{j}^{\top}
\end{array}\right]
$$

which is exactly the supply rate condition on Page 6 of Lecture Note 12. Next, we apply the following LMI condition (which is the LMI condition on Page 8 of Lecture Note 12) with $\alpha=\frac{1}{3 L}$ and $\rho^{2}=1-\min \left\{\frac{1}{3 n}, \frac{m}{3 L}\right\}:$

$$
\frac{1}{5} \sum_{i=1}^{5}\left[\begin{array}{cc}
A_{i}^{\top} P A_{i}-\rho^{2} P & A_{i}^{\top} P B_{i} \\
B_{i}^{\top} P A_{i} & B_{i}^{\top} P B_{i}
\end{array}\right]-\sum_{j=1}^{5} \lambda_{j}\left[\begin{array}{cc}
C & 0 \\
0 & I
\end{array}\right]^{\top} M_{j}\left[\begin{array}{cc}
C & 0 \\
0 & I
\end{array}\right] \leq 0
$$

We need to find P and λ_{j}. Notice that we have $n=5, L=10, m=1$, and $\alpha=\frac{1}{3 L}=\frac{1}{30}$. Based on the hints given in the class, we can choose

$$
P=\left[\begin{array}{cc}
\frac{2}{3 L} I_{5} & 0 \\
0 & \frac{1}{\alpha}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{15} I_{5} & 0 \\
0 & 30
\end{array}\right]
$$

and $\lambda_{j}=\frac{1}{L n}=0.02$ for all j. Then the left side of the LMI becomes a negative semidefinite matrix (there are many ways to show this, and one way is to realize that the eigenvalues of this matrix are [-1.0020 -0.0225-0.0225 -0.0225 -0.0225 -0.0180-0.0111-0.0020-0.0020 $-0.0020-0.0020])$. This proves the desired conclusion.

2 (a) Consider a point $x \in \mathcal{D}$. Since $\mathcal{X}_{\text {safe }}$ is an ε-net over \mathcal{D}, there exists $x_{i} \in \mathcal{X}_{\text {safe }}$ such that $\left\|x_{i}-x\right\| \leq \varepsilon$. Since $h\left(x_{i}\right) \geq \gamma$ for all $x_{i} \in \mathcal{X}_{\text {safe }}$ we have:

$$
\begin{aligned}
\gamma \leq h\left(x_{i}\right) & =h\left(x_{i}\right)-h(x)+h(x) \\
& \leq\left|h\left(x_{i}\right)-h(x)\right|+h(x) \\
& \leq \delta\left(x_{i}, \varepsilon\right)+h(x)
\end{aligned}
$$

Where we used the fact that $\left\|x-x_{i}\right\| \leq \varepsilon$ implies that $\left|h(x)-h\left(x_{i}\right)\right| \leq \delta\left(x_{i}, \varepsilon\right)$. Then

$$
h(x) \geq \gamma-\delta\left(x_{i}, \varepsilon\right) \geq 0
$$

since we assumed that $\delta\left(x_{i}, \varepsilon\right) \leq \gamma$ for all $x_{i} \in \mathcal{X}_{\text {safe }}$. Since $x \in \mathcal{D}$ was arbitrary, we're done.
(b) Similarly, let $x \in \mathcal{N}$. Since $\mathcal{X}_{\text {unsafe }}$ is an ε-net of \mathcal{N}, we have $x_{i} \in \mathcal{X}_{\text {unsafe }}$ such that $\left\|x_{i}-x\right\| \leq \varepsilon$. Since $h\left(x_{i}\right) \leq-\gamma$ for all $x_{i} \in \mathcal{X}_{\text {unsafe }}$ we have

$$
\begin{aligned}
h(x) & =h(x)-h\left(x_{i}\right)+h\left(x_{i}\right) \\
& \leq\left|h\left(x_{i}\right)-h(x)\right|+h\left(x_{i}\right) \\
& \leq \delta\left(x_{i}, \varepsilon\right)+h\left(x_{i}\right) \\
& \leq \delta\left(x_{i}, \varepsilon\right)-\gamma .
\end{aligned}
$$

Since $\delta\left(x_{i}, \varepsilon\right) \leq \gamma$ for all $x_{i} \in \mathcal{X}_{\text {safe }}, h(x) \leq 0$. Again, $x \in \mathcal{N}$ was arbitrary, so we're done.
(c) Let $x \in \mathcal{D}$. Since $\mathcal{X}_{\text {safe }}$ is an ε-net over \mathcal{D}, there exists a pair $\left(x_{i}, u_{i}\right) \in \mathcal{Z}_{d y n}$ such that $\left\|x_{i}-x\right\| \leq \varepsilon\left(\mathcal{X}_{\text {safe }}\right.$ are exactly the sampled trajectory states coming from state-control tuples $\left.\mathcal{Z}_{\text {dyn }}\right)$. Now, we consider the function $q\left(x, u_{i}\right)$, using the same control action from sampled tuple $\left(x_{i}, u_{i}\right) \in \mathcal{Z}_{\text {dyn }}$. Since $q\left(x_{i}, u_{i}\right) \geq \gamma$ for all $\left(x_{i}, u_{i}\right) \in \mathcal{Z}_{\text {dyn }}$ we have

$$
\begin{aligned}
\gamma \leq q\left(x_{i}, u_{i}\right) & =q\left(x_{i}, u_{i}\right)-q\left(x, u_{i}\right)+q\left(x, u_{i}\right) \\
& \leq\left|q\left(x_{i}, u_{i}\right)-q\left(x, u_{i}\right)\right|+q\left(x, u_{i}\right) \\
& \leq \delta\left(x_{i}, \varepsilon\right)+q\left(x, u_{i}\right)
\end{aligned}
$$

Since we assumed that $\delta\left(x_{i}, \varepsilon\right) \leq \gamma$ for all $x_{i} \in \mathcal{X}_{\text {safe }}$, we have

$$
q\left(x, u_{i}\right) \geq \gamma-\delta\left(x_{i}, \varepsilon\right) \geq 0
$$

Since $\sup _{u \in \mathcal{U}}\langle\nabla h(x), f(x)+g(x) u\rangle-\alpha(h(x)) \geq q\left(x, u_{i}\right) \geq 0$ for our choice of $u_{i} \in \mathcal{U}$, and $x \in \mathcal{D}$ was arbitrary, we have

$$
\sup _{u \in \mathcal{U}}\langle\nabla h(x), f(x)+g(x) u\rangle-\alpha(h(x)) \geq 0, \quad \forall x \in \mathcal{D}
$$

3 Denote $\xi_{k}:=\theta_{k}-\theta_{\pi}$, then (2) can be rewritten as:

$$
\theta_{k+1}-\theta_{\pi}=H_{i_{k}}\left(\theta_{k}-\theta_{\pi}\right)+G_{i_{k}},
$$

where $H_{i_{k}}=I+\varepsilon A_{i_{k}}$ and $G_{i_{k}}=\varepsilon\left(A_{i_{k}} \theta_{\pi}+b_{i_{k}}\right)$. Following Lecture Note 16 , we define the following key quantities:

$$
q_{k}^{i}=\mathbb{E}\left[\left(\theta_{k}-\theta_{\pi}\right) \mathbf{1}_{i_{k}=i}\right], \quad Q_{k}^{i}=\mathbb{E}\left[\left(\theta_{k}-\theta_{\pi}\right)\left(\theta_{k}-\theta_{\pi}\right)^{\top} \mathbf{1}_{i_{k}=i}\right] .
$$

In addition, we define $p_{k}^{i}:=\mathbb{P}\left[i_{k}=i\right]$, and introduce the augmented vectors q_{k} and Q_{k} as

$$
q_{k}=\left[\begin{array}{c}
q_{k}^{1} \\
\vdots \\
q_{k}^{n}
\end{array}\right], \quad Q_{k}=\left[\begin{array}{lll}
Q_{k}^{1} & \cdots & Q_{k}^{n}
\end{array}\right],
$$

Based on Page 4 of Lecture Note 16, we must have

$$
\left[\begin{array}{c}
q_{k+1} \\
\operatorname{vec}\left(Q_{k+1}\right)
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{H}_{11} & 0 \\
\mathcal{H}_{21} & \mathcal{H}_{22}
\end{array}\right]\left[\begin{array}{c}
q_{k} \\
\operatorname{vec}\left(Q_{k}\right)
\end{array}\right]+\left[\begin{array}{c}
u_{k}^{q} \\
u_{k}^{Q}
\end{array}\right]
$$

where $\mathcal{H}_{11}, \mathcal{H}_{21}, \mathcal{H}_{22}, u_{k}^{q}$, and u_{k}^{Q} are given by

$$
\begin{aligned}
\mathcal{H}_{11} & =\left(P^{\top} \otimes I_{n \xi}\right) \operatorname{diag}\left(H_{i}\right), \\
\mathcal{H}_{21} & =\left[\begin{array}{ccc}
p_{11}\left(G_{1} \otimes H_{1}+H_{1} \otimes G_{1}\right) & \cdots & p_{n 1}\left(G_{n} \otimes H_{n}+H_{n} \otimes G_{n}\right) \\
\vdots & \cdots & \vdots \\
p_{1 n}\left(G_{1} \otimes H_{1}+H_{1} \otimes G_{1}\right) & \cdots & p_{n n}\left(G_{n} \otimes H_{n}+H_{n} \otimes G_{n}\right)
\end{array}\right], \\
\mathcal{H}_{22} & =\left(P^{\top} \otimes I_{n_{\xi}^{2}}\right) \operatorname{diag}\left(H_{i} \otimes H_{i}\right), \\
u_{k}^{q} & =\left(P^{\top} \operatorname{diag}\left(p_{k}^{i}\right) \otimes I_{n_{\xi}}\right)\left[\begin{array}{c}
G_{1} \\
\vdots \\
G_{n}
\end{array}\right], \quad u_{k}^{Q}=\left(P^{\top} \operatorname{diag}\left(p_{k}^{i}\right) \otimes I_{n_{\xi}^{2}}\right)\left[\begin{array}{c}
G_{1} \otimes G_{1} \\
\vdots \\
G_{n} \otimes G_{n}
\end{array}\right] .
\end{aligned}
$$

Then the closed-form solution of q_{k} and $\operatorname{vec}\left(Q_{k}\right)$ for the above LTI system at any k is:

$$
\begin{aligned}
q_{k} & =\mathcal{H}_{11} q_{0}+\sum_{t=0}^{k-1} \mathcal{H}_{11}^{k-1-t} u_{t}^{q} \\
\operatorname{vec}\left(Q_{k}\right) & =\mathcal{H}_{22} \operatorname{vec}\left(Q_{0}\right)+\sum_{t=0}^{k-1} \mathcal{H}_{22}^{k-1-t}\left(\mathcal{H}_{21} q_{t}+u_{t}^{Q}\right)
\end{aligned}
$$

Finally, we can obtain the closed-form of $\mathbb{E}\left\|\theta_{k}-\theta_{\pi}\right\|^{2}$ from $\operatorname{vec}\left(Q_{k}\right)$ as below:

$$
\mathbb{E}\left\|\theta_{k}-\theta_{\pi}\right\|^{2}=\left(\mathbf{1}_{n}^{\top} \otimes \operatorname{vec}\left(I_{n_{\xi}}\right)^{\mathrm{T}}\right) \operatorname{vec}\left(Q_{k}\right)
$$

Recall that $H_{i}=I+\varepsilon A_{i}, G_{i}=\varepsilon\left(A_{i} \theta_{\pi}+b_{i}\right)$, and $p_{k}=\left(P^{T}\right)^{k} p_{0}$. Therefore, substituting these equations into $\mathcal{H}_{11}, \mathcal{H}_{21}, \mathcal{H}_{22}, u_{k}^{q}, u_{k}^{Q}$, and $\operatorname{vec}\left(Q_{0}\right)$, the equation $\mathbb{E}\left\|\theta_{k}-\theta_{\pi}\right\|^{2}=$ $\left(\mathbf{1}_{n}^{\mathrm{T}} \otimes \operatorname{vec}\left(I_{n_{\xi}}\right)^{\mathrm{T}}\right) \operatorname{vec}\left(Q_{k}\right)$ actually just gives a function form that depends on $\left\{A_{i}, b_{i}, p_{i j}\right\}$ and $\left\{\theta_{0}, \theta_{\pi}\right\}$.

