ECE586BH: Interplay between Control and Machine Learning Fall 2023
Solutions for Homework 3

1. (a) For any matrix X, we have X < 0 if and only if X ® I < 0. Therefore, the LMI
condition (1) in the problem statement is feasible if and only if the following condition is
feasible
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We can left and right multiply the above condition with {xk; v } and [zk w v } . This
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leads to
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Substituting the fact ||xgr1 — 2*||* — p?||zr — 2*||* = { o } [ ol Y o

into the above inequality, we get
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Now we can take expectation of the above inequality and apply the two supply rate conditions
given in the problem statement to show
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This completes the proof.
(b) We can choose A\; = a2, Ay = a, and p? = 1—2ma+2L%a? to make the LMI condition

(1) feasible. In this case, the left side of the LMI condition (1) becomes a zero matrix. Then
the desired conclusion directly follows.
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(c) A matrix X is positive semidefinite if and only if X ® I, > 0. Therefore, we can get
rid of the Kronecker product with I, in our LMI implementation. For SAGA, we can set the
matrices as

T

- I, — ee; O,x1 _ eie;r _
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For this problem, we have n = 5. For 5 = 1,...,5, since f; is L-smooth and m-strongly
convex, we choose M; as
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which is exactly the supply rate condition on Page 6 of Lecture Note 12. Next, we apply the
following LMI condition (which is the LMI condition on Page 8 of Lecture Note 12) with
a =5 and p? =1 —min{5-, 2 }:
5 5 T
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We need to find P and A;. Notice that we have n =5, L =10, m = 1, and o = L =1
Based on the hints given in the class, we can choose

2 1
2. 0 LI, 0

— [ 3L — |15
P [0 l} {0 30}

[0}

and \; = ﬁ = 0.02 for all j. Then the left side of the LMI becomes a negative semidefinite

matrix (there are many ways to show this, and one way is to realize that the eigenvalues
of this matrix are [-1.0020 -0.0225 -0.0225 -0.0225 -0.0225 -0.0180 -0.0111 -0.0020 -0.0020
-0.0020 -0.0020]). This proves the desired conclusion.

2 (a) Consider a point € D. Since X, e is an e-net over D, there exists x; € Xyqp. such
that ||z; — z|| <e. Since h(x;) > v for all z; € X,,fe We have:

v < h(xi) = h(x;) — h(z) + h(z)
< [h(z;) — h(z)| + h(z)
< 0(x;,e) + h(x)

Where we used the fact that ||x — ;|| < e implies that |h(z) — h(x;)] < d(x;,€). Then
W) =y = d(wie) = 0,

since we assumed that 0(z;,e) < v for all ; € Xype. Since x € D was arbitrary, we're done.
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(b) Similarly, let € N. Since Xypsafe is an e-net of N, we have z; € Xynsare such that
|z; — || <e. Since h(x;) < —y for all x; € Xypsafe We have
h(xz) = h(z) — h(x;) + h(x;)
< [h(zi) = h(z)| + h(z;)
< 5(x17 5) -7
Since d(x;,e) < for all x; € Xyape, h(x) < 0. Again, x € N was arbitrary, so we're done.

(c) Let x € D. Since Xyqp. is an e-net over D, there exists a pair (z;,u;) € Zg4, such
that ||z; — z|| < e (Xsape are exactly the sampled trajectory states coming from state-control
tuples Z4,,). Now, we consider the function ¢(x,u;), using the same control action from
sampled tuple (z;,u;) € Z4y,. Since q(z;,u;) > v for all (x;,u;) € 24y, we have

v < @iy i) = g, wi) — g2, w;) + q(o, uy)
< q(ws, ui) — q(@,us)| + gz, ug)
S (5(%2, 6) + Q(‘xa U’Z)

Since we assumed that §(x;, ) < v for all z; € X4 pe, we have
Q(CL’,UZ) Z Y- 5(1‘1‘,5) 2 07

Since sup, ¢, (Vh(2), f(x) + g(x)u) — a(h(x)) > q(z,u;) > 0 for our choice of w; € U, and
x € D was arbitrary, we have

sup (Vh(z), f(z) + g(z)u) — a(h(z)) >0, VzeD

uel

3 Denote & := 0 — 0, then (2) can be rewritten as:
Ops1 — 0= = H;, (0 — 0-) + G,

where H;, = I +¢A; and G; = (4,0, + b;,). Following Lecture Note 16, we define the
following key quantities:

Gk =E[(0k = 0)1i,=i], Qi =E[(0r — 0x) (0 — )T 15,i]
In addition, we define p!, := P[i), = 4], and introduce the augmented vectors q; and Q}, as

a

n

dy,
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Based on Page 4 of Lecture Note 16, we must have

{ @ 1 { . } { k 1 {UZ}
vec(Qri1) Hor Hoo| |vec(Qr) ug ’
where Hi1, Hor, Hoo, uz, and u,? are given by

Hu = (PT @ I,,) diag(H,),

mGoH+H ®G) - pu(G.®H,+ H,®G,)
Hoy = : : ;
Pn(GL@Hi + Hi®Gy) -+ pun(Gn @ Hy + H, ® Gy)
Hop = (PT @ I2) diag(H; ® H;),
G4 G ® Gy
ul = (PTdiag(p) @ Ing) | |, = (PTding(r) @ 1) |
G, G, ® G,

Then the closed-form solution of g and vec(Qy) for the above LTI system at any k is:

k-1

=Hi1q0 + Z,Hk Tty

t=0
k—1

vec(Qr) = Haa vec(Qo) + Z%k Moy +UtQ)

t=0

Finally, we can obtain the closed-form of E||6; — 0,]]* from vec(Q}) as below:
E||0) — 0[] = (1, @ vec(L,)T) vec(Q).

Recall that H; = [ + cA;, G; = (40, + b;), and p, = (PT)*py. Therefore, substitut-
ing these equations into Hiy, Hoi, Haa, uj, ug, and vec(Qy), the equation E||f, — 6,]|*> =
(1) ®@vec(ly,) ") vec(Qy) actually just gives a function form that depends on {A;, b;, p;;} and
{60,0:}.

3-4



