
ECE 598: Interplay between Control and Machine Learning Spring 2019

Lecture 1
Unifying the Analysis in Control and Optimization via Semidefinite Programs

Lecturer: Bin Hu, Date:01/17/2019

In this lecture, we review some stability analysis tools in the controls literature, and then
tailor them to analyze the convergence rates of some simple optimization methods. Hopefully
you will be convinced that there are similarities between the analysis problems in control
and optimization, and hence it is not too surprising that some analysis tools developed in
the controls field can be applied to study large-scale optimization.

1.1 Stability Analysis in Control

1.1.1 Autonomous Systems and Internal Stability

Possibly the simplest system in the controls literature is the following so-called linear au-
tonomous system

xk+1 = Axk (1.1)

Here we consider discrete-time systems, and xk is the state at time step k. Given the initial
condition x0, then the sequence {xk} is completely determined by (1.1). One fundamental
question control people usually ask is whether (1.1) is stable. The system (1.1) is internally
stable if xk converges to 0 given any arbitrary initial condition x0. Notice (1.1) just states
that we have xk = Akx0. Therefore, it is straightforward to verify that (1.1) is stable if
and only if the spectral radius of A is strictly less than 1. However, the spectral radius
condition only works for such linear time-invariant (LTI)1 system. It is hard to extend such
conditions for time-varying or nonlinear systems. Alternatively, one can formulate necessary
and sufficient stability conditions for (1.1) using semidefinite programs.

Theorem 1.1. The system (1.1) is internally stable if and only if there exists a positive
definite matrix P such that

ATPA− P < 0 (1.2)

Here the inequality holds in the definite sense (so what we really mean here is that the matrix
(ATPA− P ) needs to be a negative definite matrix).

1This just means A is a constant matrix and does not change over time.
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Proof: We will only show sufficiency since this direction can be generalized for time-varying
or nonlinear systems. If (1.2) holds, then there exists a sufficiently small positive number
ε > 0 such that ATPA− P ≤ −εP which can be rewritten as

ATPA− (1− ε)P ≤ 0.

Therefore we can left and right multiply both sides of the above inequality with xTk and xk
and obtain

(Axk)
TP (Axk)− (1− ε)xTkPxk ≤ 0

We have xk+1 = Axk and the above inequality is equivalent to xTk+1Pxk+1 ≤ (1− ε)xTkPxk.
By induction, we have

xTkPxk ≤ (1− ε)kxT0Px0

Since P is positive definite, we have xTkPxk ≥ λmin(P )‖xk‖2 where λmin(P ) is the smallest
eigenvalue of P and is a positive number. Finally we have

‖xk‖2 ≤ (1− ε)kc (1.3)

where c =
xT0Px0
λmin(P )

. We know 0 ≤ 1 − ε < 1 and hence ‖x‖ converges to 0 as k goes to ∞.

We have established the internal stability of (1.1).
The proof for necessity relies on the LTI assumption and is omitted here.

How to use the condition (1.2)? The testing condition (1.2) leads to a semidefinite
program (or equivalently linear matrix inequality) problem. Given A, the left side of (1.2) is
linear in P . One just needs to search such positive definite P satisfying the matrix inequality
condition in (1.2). Numerically this can be done using semidefinite programming solvers.
In the controls field, many analysis and design conditions are formulated as linear matrix
inequality (LMI) conditions, and (1.2) is one of the simplest. We will see more such LMI
conditions later.

Lyapunov functions. The proof of Theorem 1.1 relies on constructing the Lyapunov
function V (x) = xTPx. A physical interpretation for this function is that it measures how
much energy is stored in the system. This function is nonnegative for all x and is zero at the
x = 0 (which is the fixed point of (1.1)). In addition, it is radially unbounded. In the above
proof, we have shown V (xk+1) ≤ (1 − ε)V (xk). So we have shown that the internal energy
of the system is decreased at every step and eventually the minimum energy is attained at
the fixed point. Lyapunov arguments can be applied in many cases and provide a powerful
unified framework for stability analysis. We will learn more about this approach later.
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Advantages of (1.2). It is emphasized that people do not really use (1.2) when testing
the stability of (1.1). A more efficient approach is to look at the spectral radius of A
directly. However, (1.2) can be extended to time-varying/nonlinear systems which one cannot
apply the spectral radius arguments to analyze. For example, consider the so-called linear
parameter-varying (LPV) system described by the following state space model:

xk+1 = A(ζk)xk (1.4)

where the matrix A becomes a function of some scheduling parameter ζk. The parameter
ζ can be measured at every step but we do not know it in advance. We do know how A
depends on the value of ζk. Now we cannot come to a conclusion of the internal stability of
(1.4) by just looking at the spectral radius of A for all ζ. However, the Lyapunov argument
still works. We can show (1.4) is internally stable if there exists a positive definite matrix P
such that

A(ζ)TPA(ζ)− (1− ε)P ≤ 0, ∀ζ (1.5)

The proof is almost identical to the proof of Theorem 1.1. We left and right multiply both
sides of the above inequality with xTk and xk and obtain V (xk+1) ≤ (1 − ε)V (xk) which
immediately leads to the desired conclusion. Here we do not have necessity. If there is no
solution for (1.5), it is still possible that (1.4) is internally stable and then less conservative
conditions are required for further testing.

Convergence rate. Inequality (1.3) in the above proof actually gives an exponential con-
vergence rate

√
1− ε which quantifies how fast ‖xk‖ approaches 0. An LTI system is either

exponentially stable or not stable. Actually one can modify the LMI condition (1.2) to test
whether (1.1) converges at a given testing rate or not. If there exists a positive definite
matrix P such that

ATPA− ρ2P ≤ 0 (1.6)

then the system (1.1) converges at the exponential rate ρ, i.e. ‖xk‖ ≤ cρk where c is a
constant. The can be proved using a similar Lyapunov argument.

1.1.2 Taking Inputs into Accounts: Input-Output Gain

In the controls field, we study how inputs can be used to change the behavior of the system.
Built upon the autonomous system model (1.1), now we introduce more general state-space
models for dynamical systems. Let a dynamic system G be governed by a linear state-space
model, which is described by the following recursive iteration:

xk+1 = Axk +Buk

yk = Cxk +Duk
(1.7)
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where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu .
At each step k, the variables xk, uk, and yk are referred to as the state, input, and output
of the system G. When the initial condition x0 is given, the state {xk} and the output {yk}
will be completely determined by the input sequence {uk}.

Block diagram. In the controls field, block diagrams are widely used. The input-output
relationship of the dynamical system G can be described by the following block diagram.

G
u
-

y
-

Figure 1.1. The Block-Diagram for a Dynamic System G

The above block diagram just states (u, y) satisfies y = G(u) when one views the dynam-
ical system G (with some fixed initial condition) as an input-output map.

Clearly one can set u = 0 and study the internal stability of the resultant autonomous
system. We have already talked about this type of analysis. Another important question is
how the input uk will affect the output yk. A useful tool for answering such questions is the
following LMI condition.

Theorem 1.2. If there exists a positive semidefinite matrix P such that[
ATPA− P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

]
≤ 0 (1.8)

then for any x0 and arbitrary input sequence {uk}, the system (1.7) satisfies the following
bound with any N

N∑
k=0

‖yk‖2 ≤ γ2
N∑
k=0

‖uk‖2 + xT0Px0 (1.9)

Proof: Based on the condition (1.8), we have[
xk
uk

]T([
ATPA− P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

])[
xk
uk

]
≤ 0 (1.10)

Notice we have xTk+1Pxk+1 = (Axk + Buk)
TP (Axk + Buk) =

[
xk
uk

]T [
ATPA ATPB
BTPA BTPB

] [
xk
uk

]
.

Therefore, we have[
xk
uk

]T [
ATPA− P ATPB
BTPA BTPB

] [
xk
uk

]
= xTk+1Pxk+1 − xTkPxk
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Similarly, we have

‖yk‖2 − γ2‖uk‖2 = (Cxk +Duk)
T(Cxk +Duk)− γ2‖uk‖2 =

[
xk
uk

]T [
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

] [
xk
uk

]
Consequently, (1.10) just leads to

xTk+1Pxk+1 − xTkPxk + ‖yk‖2 − γ2‖uk‖2 ≤ 0 (1.11)

Since P is positive semidefinite, we know xTN+1PxN+1 ≥ 0. We can directly sum the above
inequality form k = 0 to N to finish the proof of Theorem 1.2.

Interpretations of γ. The smaller γ is, the more stable G is subject to the input u.
Therefore, γ is a measure for input-output stability. Many control problems including track-
ing and disturbance rejection can be formulated as optimization problems whose objectives
are minimizing such input-output gain γ. The famous H∞ control is based on this idea.

How to use the condition (1.8)? When (A,B,C,D) are given, the condition (1.8) is
linear in P and γ2. Therefore, minimizing γ2 subject to the constraints (1.8) and P ≥ 0 can
also be done via semidefinite programs.

1.1.3 Analyze Nonlinearity: Stability of Feedback Interconnection

Another important object that has been extensively studied in the controls field is the feed-
back interconnection. For a dynamical system G and a mapping ∆, a feedback interconnec-
tion of G and ∆ is shown in Figure 1.2 and denoted as Fu(G,∆).

G

∆

v

-

w

�

Figure 1.2. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

The feedback interconnection states that v and w must satisfy v = G(w) and w = ∆(v)
simultaneously. For example, when G is an LTI system and ∆ is a static nonlinearity, the
feedback interconnection Fu(G,∆) actually denotes the following recursive equations:

xk+1 = Axk +Bwk

vk = Cxk +Dwk

wk = ∆(vk)

(1.12)

The first two equations in the above iterations state the fact v = G(w), and the third
equation enforces w = ∆(v).
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Well-posedness. Clearly a basic question one should ask is whether there exists a pair of
(v, w) satisfying v = G(w) and w = ∆(v) simultaneously such that the feedback intercon-
nection Fu(G,∆) is well defined in the first place. This is the so-called well-posedness issue.
When D = 0, the feedback system (1.12) is equivalent to xk+1 = Axk +B∆(Cxk). Given x0,
one can completely determine xk using A, B, C, and ∆. Hence the feedback interconnection
is well-posed in this case. When D is not a zero matrix, one need to prove well-posedness in
a case-by-case manner. For simplicity, in this lecture we only consider the case where D = 0.

When D = 0, the system (1.12) is equivalent to a nonlinear autonomous system xk+1 =
Axk + B∆(Cxk). Therefore, the sequences {xk}, {wk}, and {vk} will be completely deter-
mined given an initial condition x0. It is more difficult to analyze the internal stability of the
nonlinear system xk+1 = Axk + B∆(Cxk) than the linear autonomous system xk+1 = Axk.
The nonlinear map ∆ introduces some fundamental difficulty such that the spectral radius
argument cannot be applied any more. If ∆ is a linear function, then the nonlinear system
xk+1 = Axk + B∆(Cxk) becomes linear and the internal stability analysis becomes easy.
However, general ∆ is hard to handle. For some types of nonlinearity, one can still modify
the previous Lyapunov arguments to obtain stability conditions in the form of LMIs.

For example, if one knows ∆ is a bounded operator and ‖∆(vk)‖ ≤ δ‖vk‖ for any vk,
then one can use the following LMI condition to test the internal stability of Fu(G,∆).

Theorem 1.3. Suppose ∆ is a bounded operator and ‖∆(vk)‖ ≤ δ‖vk‖ for any vk. If there
exists a positive definite matrix P and a positive rate 0 < ρ < 1 such that[

ATPA− ρ2P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

]
≤ 0 (1.13)

then for any x0, the feedback interconnection (1.12) satisfies ‖xk‖ ≤ cρk‖x0‖ where c is some
constant.

Proof: Based on the condition (1.13), we have[
xk
wk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
+

[
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

])[
xk
wk

]
≤ 0 (1.14)

Similarly as before, we have[
xk
wk

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
xk
wk

]
= xTk+1Pxk+1 − ρ2xTkPxk

We also have

−‖wk‖2 + δ2‖vk‖2 = −‖wk‖2 + δ2(Cxk +Dwk)
T(Cxk +Dwk)

=

[
xk
wk

]T [
C D
0 I

]T [
δ2I 0
0 −I

] [
C D
0 I

] [
xk
wk

]
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Consequently, (1.14) just leads to

xTk+1Pxk+1 − ρ2xTkPxk + δ2‖vk‖2 − ‖wk‖2 ≤ 0

Since ‖wk‖ = ‖∆(vk)‖ ≤ δ‖vk‖, we know δ2‖vk‖2 − ‖wk‖2 ≥ 0, and the above inequality
leads to xTk+1Pxk+1 − ρ2xTkPxk ≤ 0. Since P is positive definite, we can immediately obtain
the desired conclusion.

Again, when (A,B,C,D) and ρ2 are given, the condition (1.13) is linear in P and can
be numerically solved via semidefinite programs. The key idea in the above analysis is to
replace the nonlinearity ∆ with a bound ‖wk‖2 = ‖∆(vk)‖2 ≤ δ2‖vk‖2 and then combine
this bound with the linear state-space model of G to formulate an LMI condition.

Extensions. One can extend the above analysis to handle much more general systems.
One can generalize the analysis for the cases where G is time-varying or even stochastic.
One can also generalize the analysis for more general ∆ including uncertainty and time
delay. We will talk about these extensions later.

1.2 Analysis of Simple Optimization Algorithms

Many optimization methods for large-scale learning are first-order methods that can be
viewed as special cases of the feedback system Fu(G,∆). Therefore, it is not surprising that
one can tailor the LMI tools in control for analysis of optimization methods. To give you
a rough idea of what the first half of this course is about, we will present an example here.
Consider the optimization problem

min
x∈Rp

f(x)

where f : Rp → R is a differentiable function being L-smooth and m-strongly convex. A
differentiable function f : Rp → R is L-smooth if for all x, y ∈ Rp the following inequality
holds

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

We say f is m-strongly convex (for some m > 0) if for all x, y ∈ Rp the following inequality
holds

f(x) ≥ f(y) +∇f(y)T(x− y) +
m

2
‖x− y‖2.

A point x∗ ∈ Rn is a global min of f if for all x ∈ Rn the following holds

f(x∗) ≤ f(x).
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When f is m-strongly convex, x∗ is unique and satisfies ∇f(x∗) = 0. To find x∗, a
classical method is the gradient decent method which iterates as

xk+1 = xk − α∇f(xk) (1.15)

where α is a prescribed constant (called stepsize) one has to determine beforehand. One
can choose any initial condition x0 ∈ Rn, and compute x1, x2, . . . , xk, . . .. Here we assume
given any x, one has the access to the first-order derivative information ∇f(x). Hence the
gradient method is a first-order optimization method.

The gradient method has the advantage that it only requires the first-order derivative.
In addition, when f is L-smooth and m-strongly convex, the gradient method is guaranteed
to converge at a linear rate to the optimal point x∗ as follows

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖ (1.16)

where 0 ≤ ρ < 1. As mentioned before, in controls literature, the above convergence behavior
is called exponential convergence. However, in optimization literature, the above convergence
behavior is called linear convergence. The reason is that if one takes the log of ρk‖x0 − x∗‖,
one gets k log ρ+ log‖x0 − x∗‖, which is a linear function of k.

Clearly the smaller ρ is, the faster xk converges to x∗. However, ρ cannot be arbitrarily
small. This means the convergence speed of the algorithm depends on the parameter choice
α and also the function properties (m and L).

The following theorem describes the dependence between ρ and (α,m,L).

Theorem 1.4. Suppose f is L-smooth and m-strongly convex. Let x∗ be the unique global
min. Given a stepsize α, if there exists 0 < ρ < 1 and λ ≥ 0 such that[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
≤ 0, (1.17)

then the gradient method satisfies ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖.

The proof for the above theorem is almost identical to the proof of Theorem 1.3.
It relies on the so-called co-coercivity property which is guaranteed by L-smoothness and

m-strong convexity. Specifically, when f is L-smooth and m-strongly convex, the following
inequality holds for all x, y ∈ Rn

(∇f(x)−∇f(y))T(x− y) ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2. (1.18)

The above inequality is equivalent to[
x− y

∇f(x)−∇f(y)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− y

∇f(x)−∇f(y)

]
≥ 0
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where the left side is in a quadratic form. The above inequality can be used to prove
Theorem 1.4. We will cover the detailed proof of Theorem 1.4 in the next lecture when we
talk about the dissipation inequality approach. The basic idea is that the gradient method
is just a special case of (1.12) with A = I, B = −αI, C = I, D = 0, and ∆ = ∇f . Then it
is not surprising that one can use similar Lyapunov arguments to obtain some convergence
conditions for the resultant feedback system.

More importantly, many other optimization methods can also be recast in the form of
(1.12) with well-chosen (A,B,C). We will see how to unify the analysis and design of
optimization methods using such control system perspectives.
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