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The gradient method and SAGA are relatively easy to analyze since they only require
quadratic Lyapunov functions and pointwise quadratic constraints. Specifically, we only
need to construct a dissipation inequality in the form of V (ξk+1)− ρ2V (ξk) ≤ S(ξk, wk) (or
an expected version) with V being quadratic and S being smaller or equal to 0 for all k.
Then we immediately have V (ξk+1) ≤ ρ2V (ξk). As a matter of fact, one can prove the linear
convergence of both methods by only exploiting the one-point convexity of f . The convexity
of f is not really needed. That is not the case for Nesterov’s method and SAG.

Nesterov’s method and SAG are more difficult to analyze. One reason is that more
advanced Lyapunov functions and more sophisticated supply rates are required to exploit
the properties of f . Just imagine that we still use the sector bound condition to analyze

Nesterov’s method. Hence we can set X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
and

have S(ξk, wk) ≤ 0. If we use this X to formulate the LMI, we will see that the testing
condition is not feasible for the rate we want to test. Therefore, the sector bound condition is
too conservative for Nesterov’s method. Notice the key idea behind the dissipation inequality
framework is to approximate wk = ∇f(vk) using some supply rate conditions. For Nesterov’s
method, we will need some supply rate conditions that can exploit the convexity better and
give us Lyapunov functions in more general forms. In this lecture, we will talk about the
Lure-Postnikov Lyapunov function approach for Nesterov’s method and SAG.

10.1 Iteration Complexity of Nesterov’s Method

The convergence rate ρ naturally leads to an iteration number T guaranteeing the algorithm
to achieve the so-called ε-optimality, i.e. ‖xT − x∗‖2 ≤ ε or f(xT )− f(x∗) ≤ ε.

Based on the rate bound cρk, if we choose T = log
(
c
ε

)
/(− log ρ) = O

(
log( c

ε
)/(1− ρ)

)
,

we guarantee the ε-optimal solution. The number T just gives the “ε-optimal iteration
complexity”. It is straightforward to verify that the convergence rate bound that we obtained
for the gradient method can be converted to an iteration complexity T = O

(
L
m

log(1
ε
)
)
.

Nesterov’s method improves the iteration complexity fromO
(
L
m

log(1
ε
)
)

toO
(√

L
m

log(1
ε
)
)

.

This improvement is significant. Just consider L
m

= 10000. Then
√

L
m

= 100. Hence Nes-

terovs method is roughly 100 times faster than the gradient method in this case. The
convergence rate corresponding to this iteration complexity is ρ2 = 1 −

√
m
L

. When f is

L-smooth and m-strongly convex, Nesterov’s method with α = 1
L

and β =
√
L−
√
m√

L+
√
m

sat-
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isfies a convergence bound f(xk) − f(x∗) ≤ c
(
1−

√
m
L

)k
where c is a constant. If we

only use X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
to form the supply rate function,

the resultant LMI is not feasible with ρ2 = 1 −
√

m
L

. Now we will show how to analyze
Nesterov’s method by modifying the dissipation inequality and constructing the so-called
Lure-Postnikov Lyapunov function.

10.2 Lure-Postnikov Lyapunov Functions

Although quadratic Lyapunov functions are not enough for proving the accelerated rate
of Nesterov’s method, we can use a Lyapunov function in the form of (ξk − ξ∗)TP (ξk −
ξ∗) + f(xk) − f(x∗) to fix the issue. This type of Lyapunov functions are exactly the so-
called “Lure-Postnikov Lyapunov functions” in the controls literature. The quadratic term
(ξk− ξ∗)TP (ξk− ξ∗) can be thought as a kinetic energy and the function term f(xk)− f(x∗)
can be interpreted as a potential energy. For Nesterov’s method, one can show that the total
energy (or Hamiltonian) decreases at every step although the kinetic energy itself may not
decrease in that way.

How to construct a Lure-Postnikov Lyapunov function? The answer is using a new
supply rate! Suppose we can construct a symmetric matrix X such that the following supply
rate condition holds

S(ξk, wk) =

[
ξk − ξ∗
wk

]T
X

[
ξk − ξ∗
wk

]
≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

= ρ2(f(xk)− f(xk+1)) + (1− ρ2)(f(x∗)− f(xk+1)),

(10.1)

then the dissipation inequality V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) will directly leads to the desired
convergence bound V (ξk+1) + f(xk+1)− f(x∗) ≤ ρ2(V (ξk) + f(xk)− f(x∗)). The key issue is
how to figure out X. If we can find X1 and X2 such that[

ξk − ξ∗
wk

]T
X1

[
ξk − ξ∗
wk

]
≤ f(xk)− f(xk+1) (10.2)[

ξk − ξ∗
wk

]T
X2

[
ξk − ξ∗
wk

]
≤ f(x∗)− f(xk+1), (10.3)

then we can set X = ρ2X1 + (1 − ρ2)X2 to obtain the condition (10.1). Now let’s look at
how to obtain X1 and X2.

For illustrative purposes, we focus on the construction of X1. The construction of X2

will be similar. The condition (10.2) involves f(xk+1) and f(xk). Hence it is reasonable to
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think that its construction requires some inequalities involving the function value f . Recall
that L-smoothness and m-strong convexity give the following two inequalities:

f(x) ≤ f(y) +∇f(y)T(x− y) +
L

2
‖x− y‖2 (10.4)

f(x) ≥ f(y) +∇f(y)T(x− y) +
m

2
‖x− y‖2 (10.5)

How can we choose (x, y) in the above inequalities to obtain (10.2). One idea is to set
(x, y)→ (xk+1, xk) in (10.4). However, ∇f(y) becomes ∇f(xk) and this is not wk! The only
term involving the gradient information on the left side of (10.2) is wk which is the gradient
evaluated on vk! Therefore, when applying (10.4) and (10.5) to construct (10.2), one has to
set y to be vk! By doing this, we can show

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(xk − vk) +
m

2
‖xk − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T1

2

 β2m −β2m −β
−β2m β2m β
−β β α(2− Lα)

⊗ Ip
 xk − x∗

xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)T(xk − vk) + m

2
‖xk − vk‖2 +∇f(vk)T(vk −

xk+1) − L
2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. This gives us the

matrix X1. We can see that the key trick is just subtracting and adding f(vk).
Similarly, X2 can be derived as

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(x∗ − vk) +
m

2
‖x∗ − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)


You will be asked to figure out the details of X2 in the homework.

Now we have the matrix X that ensures the desired supply rate condition (10.1). We
are ready to apply our dissipation inequality approach to analyze Nesterov’s method. All
we need to do is to test if there exists P ≥ 0 such that[

ATPA− ρ2P ATPB
BTPA BTPB

]
−X ≤ 0. (10.6)

If so, then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤
[
ξk − ξ∗
wk

]T
X

[
ξk − ξ∗
wk

]
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which is exactly the desired dissipation inequality V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) if we define

V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) and S(ξk, wk) =

[
ξk − ξ∗
wk

]T
X

[
ξk − ξ∗
wk

]
. Clearly Vk ≥ 0

due to the fact P ≥ 0. Then the dissipation inequality and the supply rate condition
together will give us the desired Lure-Postnikov Lyapunov function for Nesterov’s method.
In the homework, you will be asked to test the above LMI. I will also provide the analytical
formula of P and you will be asked to analytically verify that (10.6) holds with that P and

(ρ2, α, β) = (1−
√

m
L
, 1
L
,
√
L−
√
m√

L+
√
m

).

Comments on SAG. Quadratic Lyapunov functions and the pointwise quadratic con-
straints developed in the last lecture are also not enough for proving the convergence rate
of SAG. However, the analysis of SAG can also be addressed by using the Lure-Postnikov
Lyapunov functions. Recall that SAG can be represented as Fu(G,∆) where G is a jump
system and the operator ∆ maps v to w as

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

 (10.7)

For this operator ∆, we can use similar tricks (adding and subtracting f(vk)) to construct
a desired supply rate condition which will eventually gives us the Lure-Postnikov Lyapunov
function. Actually the original convergence rate proof of SAG is based on a similar idea (al-
though the Lure-Postnikov Lyapunov function construction there is not based on dissipation
inequality).
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