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In the last lecture, we talked about how to use advanced supply rate conditions to con-
struct Lure-Postnikov Lyapunov functions for Nesterov’s method and SAG. The construc-
tions of these advanced supply rates require using the information of A and B. Therefore,
we need to combine the information of G and ∆ to construct such type of “coupling” con-
straints. In this lecture, we look at an alternative approach – the dynamic integral quadratic
constraint (IQC) approach.

11.1 Incorporating Dynamics into IQCs

In Lecture 7, we briefly introduced the concept of IQCs. The example given in Lecture 7
has the following simple form:

N∑
k=0

[
vk − v∗
wk − w∗

]T
M

[
vk − v∗
wk − w∗

]
≤ 0. (11.1)

This type of IQCs does not involve dynamics and can be viewed as straightforward extensions
of pointwise quadratic constraints. In this lecture, we discuss IQCs in more general forms.
Specifically, we allow “dynamic” IQCs.

Definition 1. Let Ψ be an LTI system governed by the state-space model

ψk+1 = Aψψk +Bψ1vk +Bψ2wk

rk = Cψψk +Dψ1vk +Dψ2wk
(11.2)

where det(Aψ − I) 6= 0. Suppose M = MT ∈ Rnr×nr . Given the reference points (v∗, w∗),
we specify (ψ∗, r∗) by solving the following fixed point condition:

ψ∗ = Aψψ
∗ +Bψ1v

∗ +Bψ2w
∗

r∗ = Cψψ
∗ +Dψ1v

∗ +Dψ2w
∗ (11.3)

The operator ∆ satisfies the time domain hard IQC defined by (Ψ,M, v∗, w∗) if the following
inequality holds for all w = ∆(v) and N ≥ 0

N∑
k=0

(rk − r∗)TM(rk − r∗) ≤ 0 (11.4)

where r is the output of the state-space model (11.2) with inputs (v, w) and an initial
condition ψ0 = ψ∗.
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Many control papers use “≥” in (11.4). Here we want to interpret (11.4) as a supply rate
condition and hence use “≤” instead.

Graphical interpretation. Time domain IQCs yield a graphical interpretation as shown
in Figure 11.1. Let the input and output signals of ∆ be filtered through Ψ with the initial
condition ψ0 = ψ∗. The IQC condition (11.4) just enforces a quadratic inequality on the
filtered signal r.

v
- ∆

w
-

-

- Ψ
r-

Figure 11.1. Graphical Interpretation for Time Domain IQCs

Relationship between static IQCs and general hard IQCs. If we ignore the dynamics

part (Aψ1, Bψ1, Bψ2, and Cψ are all gone), then we can set Dψ1 =

[
I
0

]
and Dψ2 =

[
0
I

]
to

recover the static IQC (11.1) as a special case of (11.4). Equivalently, in Figure 11.1, the
filter corresponding to a static IQC condition (11.1) is just a static identity mapping. As
mentioned in the previous lectures, the tightness of the dissipation inequality analysis is
determined by the approximating power of the quadratic constraints we use to describe ∆.
By incorporating dynamics into IQCs, we introduce a larger family of quadratic constraints
that can be used to approximate the relation v = ∆(w) better and tighter. This will lead to
less conservative analysis results in many situations.

11.2 Zames-Falb IQCs

Various IQCs for many different perturbation operators have been developed in the robust
control field. For our purposes of analyzing optimization methods, we focus on the IQCs
developed for ∆ = ∇f . We will look at one example in this section.

Suppose ∆ maps v to w as wk = ∇f(vk) where f is a convex differentiable function. In
Lecture 7, we talked about a static pointwise quadratic constraint (passivity) for such ∆:[

vk − v∗
wk − w∗

]T [
0 −I
−I 0

] [
vk − v∗
wk − w∗

]
≤ 0, ∀k (11.5)

Why is (11.5) conservative? The function f is not time-varying but the constraint (11.5)
does not reflect this. Just imagine wk = ∇fk(vk) where fk ia convex for all k. Assume
∇fk(v∗) = 0 for all k (all the functions at the different time steps share the same global
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min). Then (11.5) still holds. Therefore, the constraint (11.5) does not exploit the fact that
the function f is not changing over time.

How to fix the above issue? There is a large family of so-called Zames-Falb IQCs that
do exploit the fact that f is a static function that does not change over time. Let’s look at
the simplest Zames-Falb IQC that is equivalent to the following inequality:

N∑
k=0

wT
k (vk − vk−1) ≥ 0, ∀N (11.6)

where v−1 is defined to be v∗ satisfying ∇f(v∗) = 0.

Proof of the Zames-Falb IQC (11.6). We use the fact f(x) ≥ f(y) +∇f(y)T(x− y) in
a repeated manner. We can obtain

f(vk−1) ≥ f(vk) +∇f(vk)
T(vk−1 − vk)

f(vk−2) ≥ f(vk−1) +∇f(vk−1)
T(vk−2 − vk−1)

...

f(v0) ≥ f(v1) +∇f(v1)
T(v0 − v1)

f(v∗) ≥ f(v0) +∇f(v0)
T(v∗ − v0)

Summing the above inequalities up leads to
∑N

k=0w
T
k (vk − vk−1) ≥ f(vk)− f(v∗) ≥ 0.

How to rewrite (11.6) in a filter form? If we choose rk =

[
vk − vk−1

wk

]
and M =[

0 −I
−I 0

]
, then (11.4) and (11.6) are just the same. The question becomes how to generate

rk =

[
vk − vk−1

wk

]
. Notice rk can only explicitly depend on ψk, vk, and wk. Since rk cannot

explicitly depend on vk−1, we need to use ψk to memorize vk−1. We will have ψk = vk−1 and
hence ψk+1 = vk. Therefore, we have the following filter dynamics:

ψk+1 = vk

rk =

[
−I
0

]
ψk +

[
I
0

]
vk +

[
0
I

]
wk

with the initial condition ψ0 = v−1 = v∗. It is straightforward to verify that the fixed point

of the filter is given by ψ∗ = v∗ and r∗ =

[
0
0

]
. Therefore, we can rewrite (11.6) as an IQC

by choosing Aψ = 0, Bψ1 = I, Bψ2 = 0, Cψ =

[
−I
0

]
, Dψ1 =

[
I
0

]
, and Dψ2 =

[
0
I

]
.
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Other Zames-Falb IQCs. There are many Zames-Falb IQCs, and (11.6) is only one of
them. Since (11.6) looks one step back and uses the information of vk−1, it is also named
“off-by-one IQC.” Similarly, the off-by-two IQC will look two steps back and is equivalent
to the inequality

N∑
k=0

wT
k (vk − vk−2) ≥ 0, ∀N (11.7)

where v−1 = v−2 = v∗. Clearly, Aψ for the off-by-two IQC is (2p) × (2p) where p is the
dimension of vk. Looking back for more steps leads to a higher dimension of Aψ. Off-by-
τ IQCs can be defined similarly. One can also use more general filter dynamics to define
Zames-Falb IQCs and the details are omitted here. We will modify the off-by-one IQC for
analysis of Nesterov’s method in next lecture.

11.3 Dissipation Inequality with General IQCs

Recall that to use a static IQC (11.1) for analysis of a feedback interconnection Fu(G,∆),
one just replaces v = ∆(w) with the supply rate condition and then focuses on G that maps
w to v. If there exists a positive definite matrix P such that[

ATPA− ρ2P ATPB
BTPA BTPB

]
≤
[
C 0
0 I

]T
M

[
C 0
0 I

]
then one has V (ξk+1) − V (ξk) ≤ S(ξk, wk) holds with V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) and

S(ξk, wk) =

[
ξk − ξ∗
wk − w∗

]T [
C 0
0 I

]T
M

[
C 0
0 I

] [
ξk − ξ∗
wk − w∗

]
. Based on the supply rate condition∑N

k=0 S(ξk, wk) ≤ 0, one has V (ξN+1) ≤ V (ξ0) for all N .
Now let’s look at how to modify this framework for general IQCs. The idea is quite

similar. We just replace ∆ with some quadratic constraints on (v, w). Now the dynamics of
Ψ has to be taken into accounts. A graphical interpretation is shown in Figure 11.2. After
replacing ∆ with the IQC condition, the pair (v, w) still satisfies v = G(w). In addition, let
r = Ψ(v, w) = Ψ(G(w), w). Then r must satisfy the constraint (11.4). Eventually we only
need to analyze a composite system Ψ(G(w), w) with input w and the output r. And we
know r has to satisfy (11.4) as long as ψ0 = ψ∗ and v = ∆(w). This is the main difference.
For static IQCs, we only need to look at G(w). For general IQCs, we need to look at
Ψ(G(w), w). Eventually we will write Ψ(G(w), w) as a state space model

ηk+1 = Âηk + B̂wk

rk = Ĉηk + D̂wk
(11.8)
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which maps w to r, and the state ξk should be included as a part of ηk. If there exists a
positive definite matrix P such that[

ÂTPÂ− P ÂTPB̂

B̂TPÂ B̂TPB̂

]
≤
[
Ĉ D̂

]T
M
[
Ĉ D̂

]
(11.9)

then one has V (ηk+1) − V (ηk) ≤ S(ηk, wk) holds with V (ηk) = (ηk − η∗)TP (ηk − η∗) and
S(ηk, wk) = rTkMrk. Based on the IQC condition (11.4), one have V (ηN+1) ≤ V (η0) ∀N .

Notice that term on the right side of (11.9) is
[
Ĉ D̂

]T
M
[
Ĉ D̂

]
since we have rk =

Ĉηk + D̂wk.

G

∆

v

-

w

�

-

- Ψ
r-

Figure 11.2. System G Extended to Include Filter Ψ

What is this composite system Ψ(G(w), w)? In the controls field, there are many
formulas for manipulating state-space models. For illustrative purposes, let’s derive a state-
space model for Ψ(G(w), w). Suppose G is LTI and governed by

ξk+1 = Aξk +Bwk

vk = Cξk

Using the fact vk = Cξk, we can show

ψk+1 = Aψψk +Bψ1Cξk +Bψ2wk

vk = Cψψk +Dψ1Cξk +Dψ2wk

Therefore, we can augment states and obtain the following model for Ψ(G(w), w) whose
input is w and output is r:[

ξk+1

ψk+1

]
=

[
A 0

Bψ1C Aψ

] [
ξk
ψk

]
+

[
B
Bψ2

]
wk (11.10)

rk =
[
Dψ1C Cψ

] [ξk
ψk

]
+Dψ2wk (11.11)

Now we can obtain the model (11.8) by choosing ηk =

[
ξk
ψk

]
, Â =

[
A 0

Bψ1C Aψ

]
, B̂ =

[
B
Bψ2

]
,

Ĉ =
[
Dψ1C Cψ

]
, and D̂ = Dψ2. Clearly, if we can show ηk is bounded for all k, then ξk is

also bounded for all k.
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Initial condition of Ψ. One has to initialize Ψ from ψ0 = ψ∗ such that the IQC condition
(11.4) holds. Therefore, the initial condition of the composite system Ψ(G(w), w) is set up

as η0 =

[
ξ0
ψ0

]
=

[
ξ0
ψ∗

]
. This is OK since we can initialize ξ0 from any arbitrary point. The

initial condition of Fu(G,∆) is typically only embedded in ξ0.

The separation property. Notice the IQC condition (11.4) is just a property of ∆. The
construction of (11.4) is completely independent of G. Therefore, the IQC framework gives a
better way to study G and ∆ separately. However, since Ψ will increase the state dimension
of the overall system, the size of the resultant LMI will also be larger and this may cause
trouble when the goal is to analytically solve the LMI.

IQCs for convergence rate analysis. In the next lecture, we will discuss how to modify
Zames-Falb IQCs for convergence rate analysis.
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