ECE 598: Interplay between Control and Machine Learning Spring 2019 Lecture 12 Zames-Falb IQCs for Convergence Rate Analysis Lecturer: Bin Hu, Date:02/26/2019

In the last lecture, we have introduced the Zames-Falb IQCs that can be used to show the boundedness of the states, i.e. $V(\xi_k) \leq V(\xi_0)$. In this lecture, we will modify the Zames-Falb IQCs to show convergence rate bounds in the form of $V(\xi_k) \leq \rho^{2k}V(\xi_0)$. For this purpose, we need a stronger notion of IQCs. Specifically, we will introduce ρ -hard IQCs.

12.1 Convergence Rate Analysis Using ρ -Hard IQCs

First, let's formally define ρ -hard IQCs.

Definition 1. Let Ψ be an LTI system governed by the state-space model

$$\psi_{k+1} = A_{\psi}\psi_k + B_{\psi_1}v_k + B_{\psi_2}w_k$$

$$r_k = C_{\psi}\psi_k + D_{\psi_1}v_k + D_{\psi_2}w_k$$
(12.1)

where $\det(A_{\psi} - I) \neq 0$. Suppose $M = M^T \in \mathbb{R}^{n_r \times n_r}$. Given the reference points (v^*, w^*) , we specify (ψ^*, r^*) by solving the following fixed point condition:

$$\psi^* = A_{\psi}\psi^* + B_{\psi 1}v^* + B_{\psi 2}w^*$$

$$r^* = C_{\psi}\psi^* + D_{\psi 1}v^* + D_{\psi 2}w^*$$
(12.2)

The operator Δ satisfies the time domain ρ -hard IQC defined by $(\Psi, M, \rho, v^*, w^*)$ if the following inequality holds for all $w = \Delta(v)$ and $N \ge 0$

$$\sum_{k=0}^{N} \rho^{-2k} (r_k - r^*)^{\mathsf{T}} M(r_k - r^*) \le 0$$
(12.3)

where r is the output of the state-space model (12.1) with inputs (v, w) and an initial condition $\psi_0 = \psi^*$.

Again, typically control papers will use " \geq " in (12.3). Here we want to interpret (12.3) as a supply rate condition and hence use " \leq " instead.

The dependence on ρ . The condition (12.3) depends on ρ . As $k \to \infty$, the term ρ^{-2k} blows up to infinity. If $\rho = 1$, then we recover the notion of standard hard IQCs. Usually Ψ itself also depends on ρ . We will demonstrate this by an example.

Graphical interpretation. Notice that ρ -hard IQCs yield a similar graphical interpretation. In Figure 12.1, let the input and output signals of Δ be filtered through Ψ with the initial condition $\psi_0 = \psi^*$. The ρ -hard IQC condition (12.3) just enforces a quadratic inequality on the signal r.

Figure 12.1. Graphical Interpretation for ρ -Hard IQCs

Now we are ready to modify the dissipation inequality framework for convergence rate analysis. As shown in Figure 12.2, we remove Δ and enforce the constraint (12.3) on the filtered signal r. We have $r = \Psi(v, w) = \Psi(G(w), w)$ and r must satisfy the constraint (12.3). Again, we only need to analyze the composite system $\Psi(G(w), w)$ with input w and the output r.

Figure 12.2. System G Extended to Include Filter Ψ

Suppose G is LTI and governed by

$$\xi_{k+1} = A\xi_k + Bw_k$$
$$v_k = C\xi_k$$

In the last lecture, we have already shown that the augmented system $\Psi(G(w), w)$ is described by the following state space model

$$\eta_{k+1} = \hat{A}\eta_k + \hat{B}w_k$$

$$r_k = \hat{C}\eta_k + \hat{D}w_k$$
(12.4)

where $\eta_k = \begin{bmatrix} \xi_k \\ \psi_k \end{bmatrix}$, $\hat{A} = \begin{bmatrix} A & 0 \\ B_{\psi 1}C & A_{\psi} \end{bmatrix}$, $\hat{B} = \begin{bmatrix} B \\ B_{\psi 2} \end{bmatrix}$, $\hat{C} = \begin{bmatrix} D_{\psi 1}C & C_{\psi} \end{bmatrix}$, and $\hat{D} = D_{\psi 2}$.

If there exists a positive definite matrix P such that

$$\begin{bmatrix} \hat{A}^{\mathsf{T}} P \hat{A} - \rho^2 P & \hat{A}^{\mathsf{T}} P \hat{B} \\ \hat{B}^{\mathsf{T}} P \hat{A} & \hat{B}^{\mathsf{T}} P \hat{B} \end{bmatrix} \leq \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}^{\mathsf{T}} M \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}$$
(12.5)

then the exponential dissipation inequality $V(\eta_{k+1}) - \rho^2 V(\eta_k) \leq S(\eta_k, w_k)$ holds with $V(\eta_k) = (\eta_k - \eta^*)^{\mathsf{T}} P(\eta_k - \eta^*)$ and $S(\eta_k, w_k) = r_k^{\mathsf{T}} M r_k$. This dissipation inequality can be rewritten as $\rho^{-2k} V(\eta_{k+1}) - \rho^{-2k+2} V(\eta_k) \leq \rho^{-2k} S(\eta_k, w_k)$. Based on the ρ -hard IQC condition (12.3), one have $\rho^{-2N} V(\eta_{N+1}) \leq \rho^2 V(\eta_0) \forall N$. Therefore, we have $V(\eta_k) \leq \rho^{2k} V(\eta_0)$.

The function V_k is not monotonically decreasing! Notice that the ρ -hard IQCs do not lead to the conclusion $V(\xi_{k+1}) \leq \rho^2 V(\xi_k)$ in general. Therefore, V is not a Lyapunov function. The function V may increase for certain k but $V(\xi_k)$ is bounded above by $\rho^{2k}V(\xi_0)$. Allowing V to be non-monotone makes the analysis less conservative.

12.2 Weighted Off-by-One IQC

Suppose Δ maps v to w as $w_k = \nabla f(v_k)$ where f is L-smooth and m-strongly convex. What is the most commonly-used ρ -hard IQC for such Δ ?

First, it is obvious that pointwise quadratic constraints directly lead to ρ -hard IQCs for any ρ . Hence we can choose $r_k = \begin{bmatrix} v_k \\ w_k \end{bmatrix}$ and obtain the following condition:

$$\sum_{k=0}^{N} \rho^{-2k} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2mLI & -(m+L)I \\ -(m+L)I & 2I \end{bmatrix} \begin{bmatrix} v_k - v^* \\ w_k - w^* \end{bmatrix} \le 0, \,\forall k$$
(12.6)

Again, (12.6) is conservative in the sense that it does not reflect the fact that the function f is not time-varying. Just imagine $w_k = \nabla f_k(v_k)$ where f_k is *L*-smooth and *m*-strongly convex for all k. Assume $\nabla f_k(v^*) = 0$ for all k (all the functions at the different time steps share the same global min). Then (12.6) still holds. This condition does not exploit the fact that the function f is not changing over time.

We can modify the Zames-Falb IQCs to fix the above issue. When f is L-smooth and m-strongly convex, we can actually prove the following inequality for $w = \Delta(v)$:

$$\sum_{k=0}^{N} \rho^{-2k} (-m(v_k - v^*) + (w_k - w^*))^{\mathsf{T}} (L(v_k - v^*) - (w_k - w^*) - \rho^2 L(v_{k-1} - v^*) + \rho^2 (w_{k-1} - w^*)) \ge 0$$
(12.7)

where v_{-1} is defined to be v^* satisfying $\nabla f(v^*) = 0$, and $w_{-1} = \nabla f(v_{-1}) = 0$. In addition, we have $w^* = \nabla f(v^*) = 0$.

We skip the proof for the above ρ -hard IQC. Let's try to rewrite the above inequality in a filter form. If we choose $r_k = \begin{bmatrix} Lv_k - w_k - \rho^2 Lv_{k-1} + \rho^2 w_{k-1} \\ -mv_k + w_k \end{bmatrix}$ and $M = \begin{bmatrix} 0 & -I \\ -I & 0 \end{bmatrix}$, then (12.3) and (12.7) are just the same. The question becomes how to generate $r_k = \begin{bmatrix} Lv_k - w_k - \rho^2 Lv_{k-1} + \rho^2 w_{k-1} \\ -mv_k + w_k \end{bmatrix}$. Notice r_k can only explicitly depend on ψ_k , v_k , and w_k . Since r_k cannot explicitly depend on v_{k-1} and w_{k-1} , we need to use ψ_k to memorize $(Lv_{k-1} - w_{k-1})$. We will have $\psi_k = Lv_{k-1} - w_{k-1}$ and hence $\psi_{k+1} = Lv_k - w_k$. Therefore, we have the following filter dynamics:

$$\psi_{k+1} = Lv_k - w_k$$
$$r_k = \begin{bmatrix} -\rho^2 I\\ 0 \end{bmatrix} \psi_k + \begin{bmatrix} LI\\ -mI \end{bmatrix} v_k + \begin{bmatrix} -I\\ I \end{bmatrix} w_k$$

with the initial condition $\psi_0 = Lv_{-1} - w_{-1} = Lv^*$. It is straightforward to verify that the fixed point of the filter is given by $\psi^* = Lv^*$ and $r^* = \begin{bmatrix} (1-\rho^2)Lv^* \\ -mv^* \end{bmatrix}$ due to the fact $w^* = 0$. Therefore, we can rewrite (12.7) as an ρ -hard IQC by choosing $A_{\psi} = 0$, $B_{\psi 1} = LI$, $B_{\psi 2} = -I$, $C_{\psi} = \begin{bmatrix} -\rho^2 I \\ 0 \end{bmatrix}$, $D_{\psi 1} = \begin{bmatrix} LI \\ -mI \end{bmatrix}$, and $D_{\psi 2} = \begin{bmatrix} -I \\ I \end{bmatrix}$. You can use these matrices to formulate the LMI for Problem 2 in HW1!

Comparison with the Lure Postnikov Lyapunov function approach. In Lecture 10, we introduce the Lure Postnikov Lyapunov function approach for analyzing Nesterov's method. The resultant LMI is 3×3 , and the size of P is 2×2 . The above ρ -hard IQC will leads to a 4×4 LMI, and the size of P becomes 3×3 . This makes analytical analysis more difficult. However, the analysis result from the ρ -hard IQC does improve the result from the Lure Postnikov Lyapunov function approach by a constant factor. You will see this in the homework.

Other Zames-Falb IQCs. There is a general routine that tailors Zames-Falb IQCs for convergence rate analysis, and (12.7) is only one example. Since (12.7) looks one step back and uses the information of (v_{k-1}, w_{k-1}) , it is also named "weighted off-by-one IQC." Basically the off-by-one IQC is weighted by the rate ρ . Similarly, off-by- τ IQCs can be tailored as weighted off-by- τ IQCs.