ECE 598: Interplay between Control and Machine Learning Spring 2019

Lecture 12
Zames-Falb IQCs for Convergence Rate Analysis

Lecturer: Bin Hu, Date:02/26/2019

In the last lecture, we have introduced the Zames-Falb IQCs that can be used to show the
boundedness of the states, i.e. V(&) < V(&). In this lecture, we will modify the Zames-Falb
IQCs to show convergence rate bounds in the form of V(&) < p**V(&,). For this purpose,
we need a stronger notion of IQCs. Specifically, we will introduce p-hard IQCs.

12.1 Convergence Rate Analysis Using p-Hard 1QCs
First, let’s formally define p-hard IQCs.

Definition 1. Let ¥ be an LTI system governed by the state-space model

Y1 = Ayt + Byavg + Byowy,

12.1
Tr = Cq/ﬂ/Jk + D¢1Uk + Dwgwk ( )

where det(A, — I) # 0. Suppose M = MT € R"™*" . Given the reference points (v*, w*),
we specify (¢*,r*) by solving the following fixed point condition:

77/}* = Awﬂfk + B¢1U* + Bd,Q’LU*

r = C,M/) +D¢1U —i—Dwgw

The operator A satisfies the time domain p-hard IQC defined by (¥, M, p, v*, w*) if the fol-
lowing inequality holds for all w = A(v) and N >0

N
Zp_%(rk — r*)TM(rk —r") <0 (12.3)
k=0

where r is the output of the state-space model (12.1) with inputs (v,w) and an initial
condition 1y = V*.

Again, typically control papers will use “>” in (12.3). Here we want to interpret (12.3) as a
supply rate condition and hence use “<” instead.

The dependence on p. The condition (12.3) depends on p. As k — oo, the term p=2
blows up to infinity. If p = 1, then we recover the notion of standard hard IQCs. Usually ¥
itself also depends on p. We will demonstrate this by an example.
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Graphical interpretation. Notice that p-hard IQCs yield a similar graphical interpre-
tation. In Figure 12.1, let the input and output signals of A be filtered through ¥ with
the initial condition ¥y = ¥*. The p-hard IQC condition (12.3) just enforces a quadratic
inequality on the signal 7.
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Figure 12.1. Graphical Interpretation for p-Hard IQCs

Now we are ready to modify the dissipation inequality framework for convergence rate
analysis. As shown in Figure 12.2, we remove A and enforce the constraint (12.3) on the
filtered signal r. We have r = ¥(v, w) = ¥(G(w), w) and r must satisfy the constraint (12.3).
Again, we only need to analyze the composite system V(G(w),w) with input w and the
output r.

Figure 12.2. System G Extended to Include Filter ¥

Suppose G is LTI and governed by

Ekr1 = A&, + By,
v = C&,

In the last lecture, we have already shown that the augmented system W(G(w),w) is de-
scribed by the following state space model

Ng+1 = Aﬁk + Bwk

. . (12.4)
T = C??k + Dwk

& s A O 5 | B| A_ A
Wherenk—{¢k,A— BuC Aw’B_ Bus ,C’—[DMC C’q/,},andD—Dw.
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If there exists a positive definite matrix P such that

ATPA— P ATPB o aqT A a

BTPA BTPR < [C D} M [C D} (12.5)
then the exponential dissipation inequality V (nx11)—p*V (k) < S(ng, wi) holds with V (n,) =
(m — )T P (e — n*) and S(nk, wy,) = 1§ Mry. This dissipation inequality can be rewritten
as p 2V (Ney1) — p P2V () < p2*S(ng, wy). Based on the p-hard IQC condition (12.3),
one have p~2NV (ny11) < p?V (o) VN. Therefore, we have V (n;.) < p?*V (n).

The function V; is not monotonically decreasing! Notice that the p-hard IQCs do
not lead to the conclusion V(&,41) < p?V(&) in general. Therefore, V' is not a Lyapunov
function. The function V may increase for certain k but V(&) is bounded above by p?*V (&).
Allowing V' to be non-monotone makes the analysis less conservative.

12.2 Weighted Off-by-One I1QC

Suppose A maps v to w as wy = V f(vg) where f is L-smooth and m-strongly convex. What
is the most commonly-used p-hard IQC for such A?
First, it is obvious that pointwise quadratic constraints directly lead to p-hard IQCs for

any p. Hence we can choose 7, = [Zk and obtain the following condition:
k

N T
2 U — U 2mLI —(m+ L)I| | v —v*
kz: Luk — ] {—(m + L)I 21 wy — w* <0, vk (12.6)

Again, (12.6) is conservative in the sense that it does not reflect the fact that the function
f is not time-varying. Just imagine wy = V fi(vg) where fi is L-smooth and m-strongly
convex for all k. Assume V fi(v*) = 0 for all k£ (all the functions at the different time steps
share the same global min). Then (12.6) still holds. This condition does not exploit the fact
that the function f is not changing over time.

We can modify the Zames-Falb IQCs to fix the above issue. When f is L-smooth and
m-strongly convex, we can actually prove the following inequality for w = A(v):

> (=m(og = ) + (w — ")) (L(vg — v*) = (wg — w*) = p*L{vg—y = v*) + p*(wyy —w")) >0
(12.7)

where v_; is defined to be v* satisfying V f(v*) = 0, and w_1 = V f(v_;) = 0. In addition,
we have w* = V f(v*) = 0.

We skip the proof for the above p-hard IQC. Let’s try to rewrite the above inequality
Ly, — wy, — p*Lvg_y + P2wk—1} and M = { 0 _I]

in a filter form. If we choose r, = g+ wy 70
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then (12.3) and (12.7) are just the same. The question becomes how to generate r, =
Ly, — wy — p*Lvg_1 + p*wp_
—Mmug + Wy
Since ry cannot explicitly depend on vy_; and wy_1, we need to use ¢ to memorize (Lvg_1 —
wg_1). We will have ¢y, = Lvg_; — wy_1 and hence 911 = Lvy — wy. Therefore, we have the
following filter dynamics:

}. Notice r; can only explicitly depend on ¥y, vg, and wy.

Y1 = Lo, — wy,
— 0?1 LI -1
N e e R

with the initial condition g = Lv_y —w_; = Lv*. It is straightforward to verify that the

(1= p?)Lo*

fixed point of the filter is given by ¢* = Lv* and r* = [ ) } due to the fact w* = 0.

—mu
Therefore, we can rewrite (12.7) as an p-hard IQC by choosing Ay, = 0, By1 = LI, Bys = —1,
2
_ |
C, = { /
the LMI for Problem 2 in HW1!

, Dy = _[;i I] , and Dyy = [_]I] . You can use these matrices to formulate

Comparison with the Lure Postnikov Lyapunov function approach. In Lecture
10, we introduce the Lure Postnikov Lyapunov function approach for analyzing Nesterov’s
method. The resultant LMI is 3 x 3, and the size of P is 2 x 2. The above p-hard IQC will
leads to a 4 x 4 LMI, and the size of P becomes 3 x 3. This makes analytical analysis more
difficult. However, the analysis result from the p-hard IQC does improve the result from the
Lure Postnikov Lyapunov function approach by a constant factor. You will see this in the
homework.

Other Zames-Falb IQCs. There is a general routine that tailors Zames-Falb IQCs for
convergence rate analysis, and (12.7) is only one example. Since (12.7) looks one step
back and uses the information of (vy_1,wk_1), it is also named “weighted off-by-one 1QC.”
Basically the off-by-one IQC is weighted by the rate p. Similarly, off-by-7 IQCs can be
tailored as weighted off-by-7 1QCs.
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