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In the last lecture, we have introduced the Zames-Falb IQCs that can be used to show the
boundedness of the states, i.e. V (ξk) ≤ V (ξ0). In this lecture, we will modify the Zames-Falb
IQCs to show convergence rate bounds in the form of V (ξk) ≤ ρ2kV (ξ0). For this purpose,
we need a stronger notion of IQCs. Specifically, we will introduce ρ-hard IQCs.

12.1 Convergence Rate Analysis Using ρ-Hard IQCs

First, let’s formally define ρ-hard IQCs.

Definition 1. Let Ψ be an LTI system governed by the state-space model

ψk+1 = Aψψk +Bψ1vk +Bψ2wk

rk = Cψψk +Dψ1vk +Dψ2wk
(12.1)

where det(Aψ − I) 6= 0. Suppose M = MT ∈ Rnr×nr . Given the reference points (v∗, w∗),
we specify (ψ∗, r∗) by solving the following fixed point condition:

ψ∗ = Aψψ
∗ +Bψ1v

∗ +Bψ2w
∗

r∗ = Cψψ
∗ +Dψ1v

∗ +Dψ2w
∗ (12.2)

The operator ∆ satisfies the time domain ρ-hard IQC defined by (Ψ,M, ρ, v∗, w∗) if the fol-
lowing inequality holds for all w = ∆(v) and N ≥ 0

N∑
k=0

ρ−2k(rk − r∗)TM(rk − r∗) ≤ 0 (12.3)

where r is the output of the state-space model (12.1) with inputs (v, w) and an initial
condition ψ0 = ψ∗.

Again, typically control papers will use “≥” in (12.3). Here we want to interpret (12.3) as a
supply rate condition and hence use “≤” instead.

The dependence on ρ. The condition (12.3) depends on ρ. As k → ∞, the term ρ−2k

blows up to infinity. If ρ = 1, then we recover the notion of standard hard IQCs. Usually Ψ
itself also depends on ρ. We will demonstrate this by an example.
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Graphical interpretation. Notice that ρ-hard IQCs yield a similar graphical interpre-
tation. In Figure 12.1, let the input and output signals of ∆ be filtered through Ψ with
the initial condition ψ0 = ψ∗. The ρ-hard IQC condition (12.3) just enforces a quadratic
inequality on the signal r.
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Figure 12.1. Graphical Interpretation for ρ-Hard IQCs

Now we are ready to modify the dissipation inequality framework for convergence rate
analysis. As shown in Figure 12.2, we remove ∆ and enforce the constraint (12.3) on the
filtered signal r. We have r = Ψ(v, w) = Ψ(G(w), w) and r must satisfy the constraint (12.3).
Again, we only need to analyze the composite system Ψ(G(w), w) with input w and the
output r.
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Figure 12.2. System G Extended to Include Filter Ψ

Suppose G is LTI and governed by

ξk+1 = Aξk +Bwk

vk = Cξk

In the last lecture, we have already shown that the augmented system Ψ(G(w), w) is de-
scribed by the following state space model

ηk+1 = Âηk + B̂wk

rk = Ĉηk + D̂wk
(12.4)

where ηk =

[
ξk
ψk

]
, Â =

[
A 0

Bψ1C Aψ

]
, B̂ =

[
B
Bψ2

]
, Ĉ =

[
Dψ1C Cψ

]
, and D̂ = Dψ2.
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If there exists a positive definite matrix P such that[
ÂTPÂ− ρ2P ÂTPB̂

B̂TPÂ B̂TPB̂

]
≤
[
Ĉ D̂

]T
M
[
Ĉ D̂

]
(12.5)

then the exponential dissipation inequality V (ηk+1)−ρ2V (ηk) ≤ S(ηk, wk) holds with V (ηk) =
(ηk − η∗)TP (ηk − η∗) and S(ηk, wk) = rTkMrk. This dissipation inequality can be rewritten
as ρ−2kV (ηk+1) − ρ−2k+2V (ηk) ≤ ρ−2kS(ηk, wk). Based on the ρ-hard IQC condition (12.3),
one have ρ−2NV (ηN+1) ≤ ρ2V (η0) ∀N . Therefore, we have V (ηk) ≤ ρ2kV (η0).

The function Vk is not monotonically decreasing! Notice that the ρ-hard IQCs do
not lead to the conclusion V (ξk+1) ≤ ρ2V (ξk) in general. Therefore, V is not a Lyapunov
function. The function V may increase for certain k but V (ξk) is bounded above by ρ2kV (ξ0).
Allowing V to be non-monotone makes the analysis less conservative.

12.2 Weighted Off-by-One IQC

Suppose ∆ maps v to w as wk = ∇f(vk) where f is L-smooth and m-strongly convex. What
is the most commonly-used ρ-hard IQC for such ∆?

First, it is obvious that pointwise quadratic constraints directly lead to ρ-hard IQCs for

any ρ. Hence we can choose rk =

[
vk
wk

]
and obtain the following condition:

N∑
k=0

ρ−2k

[
vk − v∗
wk − w∗

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
vk − v∗
wk − w∗

]
≤ 0, ∀k (12.6)

Again, (12.6) is conservative in the sense that it does not reflect the fact that the function
f is not time-varying. Just imagine wk = ∇fk(vk) where fk is L-smooth and m-strongly
convex for all k. Assume ∇fk(v∗) = 0 for all k (all the functions at the different time steps
share the same global min). Then (12.6) still holds. This condition does not exploit the fact
that the function f is not changing over time.

We can modify the Zames-Falb IQCs to fix the above issue. When f is L-smooth and
m-strongly convex, we can actually prove the following inequality for w = ∆(v):

N∑
k=0

ρ−2k(−m(vk − v∗) + (wk − w∗))T(L(vk − v∗)− (wk − w∗)− ρ2L(vk−1 − v∗) + ρ2(wk−1 − w∗)) ≥ 0

(12.7)

where v−1 is defined to be v∗ satisfying ∇f(v∗) = 0, and w−1 = ∇f(v−1) = 0. In addition,
we have w∗ = ∇f(v∗) = 0.

We skip the proof for the above ρ-hard IQC. Let’s try to rewrite the above inequality

in a filter form. If we choose rk =

[
Lvk − wk − ρ2Lvk−1 + ρ2wk−1

−mvk + wk

]
and M =

[
0 −I
−I 0

]
,
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then (12.3) and (12.7) are just the same. The question becomes how to generate rk =[
Lvk − wk − ρ2Lvk−1 + ρ2wk−1

−mvk + wk

]
. Notice rk can only explicitly depend on ψk, vk, and wk.

Since rk cannot explicitly depend on vk−1 and wk−1, we need to use ψk to memorize (Lvk−1−
wk−1). We will have ψk = Lvk−1−wk−1 and hence ψk+1 = Lvk−wk. Therefore, we have the
following filter dynamics:

ψk+1 = Lvk − wk

rk =

[
−ρ2I

0

]
ψk +

[
LI
−mI

]
vk +

[
−I
I

]
wk

with the initial condition ψ0 = Lv−1 − w−1 = Lv∗. It is straightforward to verify that the

fixed point of the filter is given by ψ∗ = Lv∗ and r∗ =

[
(1− ρ2)Lv∗
−mv∗

]
due to the fact w∗ = 0.

Therefore, we can rewrite (12.7) as an ρ-hard IQC by choosing Aψ = 0, Bψ1 = LI, Bψ2 = −I,

Cψ =

[
−ρ2I

0

]
, Dψ1 =

[
LI
−mI

]
, and Dψ2 =

[
−I
I

]
. You can use these matrices to formulate

the LMI for Problem 2 in HW1!

Comparison with the Lure Postnikov Lyapunov function approach. In Lecture
10, we introduce the Lure Postnikov Lyapunov function approach for analyzing Nesterov’s
method. The resultant LMI is 3× 3, and the size of P is 2× 2. The above ρ-hard IQC will
leads to a 4× 4 LMI, and the size of P becomes 3× 3. This makes analytical analysis more
difficult. However, the analysis result from the ρ-hard IQC does improve the result from the
Lure Postnikov Lyapunov function approach by a constant factor. You will see this in the
homework.

Other Zames-Falb IQCs. There is a general routine that tailors Zames-Falb IQCs for
convergence rate analysis, and (12.7) is only one example. Since (12.7) looks one step
back and uses the information of (vk−1, wk−1), it is also named “weighted off-by-one IQC.”
Basically the off-by-one IQC is weighted by the rate ρ. Similarly, off-by-τ IQCs can be
tailored as weighted off-by-τ IQCs.
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