
ECE 598: Interplay between Control and Machine Learning Spring 2019

Lecture 2
Uncertainty Modeling and Robustness Analysis

Lecturer: Bin Hu, Date:01/22/2019

In the last lecture, we have introduced the feedback interconnection depicted in Fig-
ure 2.1 and briefly talked about its modeling power. Specifically, we talked about the case
where G is LTI with D = 0 and ∆ is a static nonlinearity. In today’s lecture, we will further
discuss the modeling power of such feedback interconnections. This type of feedback inter-
connections becomes a key object for robust control study due to the fact that it can model
various “perturbed” versions of linear systems. The perturbation can be model uncertainty,
delays, or nonlinearity. We will explain this in today’s lecture and then talk about a general
robustness analysis tool called dissipation inequality. In today’s lecture, we will use ξk to
denote the state of G since xk will be used to denote the iteration of optimization methods.
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Figure 2.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

2.1 Uncertainty Modeling in Control

In the controls field, the feedback interconnection Fu(G,∆) is widely used to model uncer-
tain or nonlinear systems. The idea is to separate a dynamical system into two pieces: a
“nominal” part G and a perturbation ∆. The nominal part G is typically linear and easy to
analyze. The perturbation ∆ can be the uncertainty in the system dynamics or some trouble-
some element causing difficulty in the analysis. The feedback interconnection Fu(G,∆) can
be viewed as a “perturbed” version of the nominal system G. The study for such perturbed
systems forms the foundation of robust control. Now let’s look at a few examples of ∆.

• Parametric uncertainty: Consider a linear system ξk+1 = Aξk. We want to know
whether this system is stable or not. In practice, we will not know A exactly. Typically
we have A = Ā + Aδ where Ā is some measured version of A and Aδ captures the
uncertainty in the system dynamics. We do not know what Aδ is exactly equal to, but
we do know that Aδ is a constant matrix whose input-put gain is bounded above by
some small number. Therefore, the system dynamics becomes ξk+1 = (Ā+Aδ)ξk, and
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can be rewritten as a special case of Fu(G,∆) where ∆ maps v to w as wk = (Aδ)vk,
and G is defined as

ξk+1 = Āξk + wk

vk = ξk

Although we do not know what Aδ is equal to, it is still possible that we can use the
bound on Aδ to establish the stability of such a feedback interconnection.

• Time-varying parameters: In the above example, we can further allow Aδ to change
over time, i.e. wk = (A

(k)
δ )vk. We can absorb the time-varying element into ∆ and

treat it as a perturbation.

• Time delay: Consider a control system ξk+1 = Aξk + Buk where the state feedback
controller is affected by a delay, i.e. uk = Kξk−τk . Ideally, the control input should
be determined based on the current state information. However, there may be a time
delay in the system and eventually uk is calculated based on a past state measurement
xk−τk . Here τk is the delay at step k. We can choose G as an LTI system governed by
ξk+1 = Aξk+BKwk and vk = ξk. Then the control system can be modeled as Fu(G,∆)
where ∆ is a delay operator mapping v to w as wk = vk−τk . Notice G and ∆ should
be thought as operators that map real sequences to real sequences.

• Dynamical uncertainty: Sometimes even the order of the model may not be correct.
For example, one may use a rigid body model for control purposes when there are
flexible modes in the true dynamics. In this case, ∆ is a frequency domain uncertainty
satisfying some norm bound. In this course, we focus less on dynamical uncertainty
but it is worth mentioning that dynamical uncertainty plays a critical role for robust
control of physical systems.

• Actuator saturation and other nonlinearity: Sometimes a few parts of a control system
can not be modeled by linear approximations and the nonlinearity has to be taken into
accounts for the stability analysis. It is possible to separate the nonlinearity from the
linear dynamics and absorb it into ∆. One such example is the actuator saturation.
Other examples include periodically changing nonlinear functions such as cos and sin.

To summarize, the perturbation ∆ can model uncertain dynamics, time delay, and nonlin-
earity in the control system. All these perturbation operators have been extensively studied
in the controls literature. Many LMIs have been formulated to test the stability of feedback
systems involving such perturbations.

2.2 Optimization Methods as Feedback Systems

In recent years it has been recognized that many first-order optimization methods for large-
scale problems are just special cases of feedback systems. In this section, we will look at a
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few examples including the gradient descent method, the Heavy-ball method, and Nesterov’s
accelerated method.

We have already talked about the gradient method that iterates as xk+1 = xk−α∇f(xk).
The Heavy-ball method iterates as

xk+1 = xk − α∇f(xk) + β(xk − xk−1) (2.1)

The extra term β(xk − xk−1) is the so-called “momentum term.” One needs to choose
the stepsize α and the momentum β, and also initialize the method at x0 and x−1. Then
based on this iteration, one can compute x1, x2, . . ..

Nesterov’s accelerated method has a similar iterative form:

yk = xk + β(xk − xk−1)

xk+1 = yk − α∇f(yk)

We can simply rewrite Nesterov’s method as

xk+1 = xk − α∇f((1 + β)xk − βxk−1) + β(xk − xk−1) (2.2)

This looks very similar to the Heavy-ball method. The difference is that Nesterov’s acceler-
ated method uses a gradient evaluated at (1 + β)xk − βxk−1 while the Heavy-ball method
uses a gradient evaluated at xk. The Heavy-ball method and Nesterov’s method only use the
first-order derivative (gradient) and do not require evaluating the second-order derivative
(Hessian). Hence they belong to “first-order optimization methods.”

All the above methods can be modeled as feedback interconnection Fu(G,∆) where G is
an LTI system with D = 0 and ∆ is just the gradient ∇f . In this case, Fu(G,∆) becomes
the following feedback model

ξk+1 = Aξk +Bwk

vk = Cξk

wk = ∇f(vk)

(2.3)

where A, B, and C are matrices with compatible dimensions. In this general model, we can
choose (A,B,C) accordingly to recover various first-order methods.

1. For gradient method, we choose A = I, B = −αI, C = I, and ξk = xk. Then
vk = Cξk = xk, and wk = ∇f(vk) = ∇f(xk). The iteration ξk+1 = Aξk + Bwk just
becomes xk+1 = Axk +Bwk = xk − α∇f(xk), which is exactly the gradient method.

2. For the Heavy-ball method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
I 0

]
,

and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
I 0

] [ xk
xk−1

]
= xk, and wk = ∇f(vk) = ∇f(xk).

The iteration ξk+1 = Aξk +Bwk becomes[
xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(xk) =

[
(1 + β)xk − βxk−1 − α∇f(xk)

xk

]
which is exactly the iteration for the Heavy-ball method.
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3. For Nesterov’s accelerated method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
,

C =
[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
(1 + β)I −βI

] [ xk
xk−1

]
=

(1 + β)xk − βxk−1, and wk = ∇f(vk) = ∇f((1 + β)xk − βxk−1). The iteration ξk+1 =
Aξk +Bwk becomes[

xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(vk)

=

[
(1 + β)xk − βxk−1 − α∇f((1 + β)xk − βxk−1)

xk

]
which is exactly the iteration (2.2) for Nesterov’s accelerated method.

We can see that the only difference between Nesterov’s accelerated method and the
Heavy-ball method is the choice of C. The different choices of C lead to completely different
performance guarantees for these two methods when applied to smooth strongly-convex
objective functions.

2.3 Robustness Analysis via Dissipation Inequalities

The impacts of the perturbation ∆ on the performance of the closed-loop system Fu(G,∆)
can be assessed by various robustness analysis tools in the controls literature. One such
analysis routine is provided by the dissipation inequality approach.

Let us first look at ξk+1 = Aξk+Bwk. Dissipation inequality just describes how the input
wk changes the energy of the state ξk.

Definition 1. The system ξk+1 = Aξk + Bwk is dissipative with respect to the supply rate
S(ξ, w) if there exists V : Rnξ 7→ R+ such that

V (ξk+1)− V (ξk) ≤ S(ξk, wk) (2.4)

for all k. The function V is called a storage function, which quantifies the energy stored in
the state ξ. The supply rate S is a function that quantifies the energy supplied to the state
ξk by the input wk. In addition, (2.4) is called the dissipation inequality.

The dissipation inequality (2.4) states that the internal energy increase is equal to the
sum of the supplied energy and the energy dissipation. Since there will always be some
energy dissipating from the system, hence the internal energy increase (which is exactly
V (ξk+1) − V (ξk)) is always bounded above by the energy supplied to the system (which is
exactly S(ξk, wk)).

One important variant of the original dissipation inequality is the so-called exponential
dissipation inequality:

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, wk) (2.5)
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where 0 < ρ2 < 1. The dissipation inequality (2.5) just states that at least a (1−ρ2) fraction
of the internal energy will dissipate at every step, and hence the internal energy at step k+1
is bounded above by the sum of the remaining energy ρ2V (ξk) and the supply energy S.

2.3.1 How to use dissipation inequality?

Suppose we can construct the dissipation inequality (2.5). What are we going to do about
it? The answer is that the dissipation inequality (2.5) can be used to prove stability or
convergence rate bounds for Fu(G,∆). To make things concrete, let’s focus on (2.3) which
is a general model for optimization methods.

Notice by definition Vk ≥ 0 (the internal energy should be non-negative). Typically V
is chosen to be a distance metric between ξk and the equilibrium point ξ∗. For example,
for gradient method, V is chosen as V = ‖x− x∗‖2. When applied to analyze optimization
methods, the dissipation inequality is typically used to prove two types of bounds.

1. If one already knows S ≤ 0, then the dissipation inequality (2.5) states V (ξk+1) −
ρ2V (ξk) ≤ S(ξk, wk) ≤ 0. This gives a bound V (ξk+1) ≤ ρ2V (ξk). This proves a linear
convergence rate ρ when V is used as a distance metric. We will present such an
example by analyzing the gradient method.

2. If one already knows S ≤ ρ2(f(xk)− f(x∗))− (f(xk+1)− f(x∗)), then the dissipation
inequality (2.5) states V (ξk+1)−ρ2V (ξk) ≤ S(ξk, wk) ≤ ρ2(f(xk)−f(x∗))− (f(xk+1)−
f(x∗)). This gives a bound V (ξk+1) + f(xk+1) − f(x∗) ≤ ρ2 (V (ξk) + f(xk)− f(x∗)).
This proves a linear convergence rate ρ when V (ξk)+f(xk)−f(x∗) is used as a distance
metric. There is going to be one lecture devoting to cover such an argument for the
convergence rate analysis of Nesterov’s accelerated method.

2.3.2 How to choose supply rate?

The supply rate S typically takes a form of a quadratic function:

S(ξ, w) =

[
ξ − ξ∗
w

]T
X

[
ξ − ξ∗
w

]
(2.6)

where X is some given matrix. The key issue is how to choose X.
Recall that the feedback dynamics Fu(G,∆) consists of two parts: v = G(w) and w =

∆(v). If we want to choose X to guarantee the supply rate S satisfying some inequality, e.g.
S ≤ 0, we need to use the property of ∆.

For example, consider the gradient method. Here ∆ is just ∇f . If f is L-smooth and
m-strongly convex, we know the following inequality holds for any wk = ∇f(Cξk)[

Cξk − Cξ∗
wk

] [
−2mLI (m+ L)I

(m+ L)I −2I

] [
Cξk − Cξ∗

wk

]
≥ 0. (2.7)
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We can simply choose X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
and then the supply

rate (2.6) satisfies S ≤ 0 due to the fact wk = ∇f(Cξk).
Many control papers focus on developing X for various types of ∆. We will see more

supply rate conditions in the rest of this course.

2.3.3 How to construct the dissipation inequality?

Now suppose we have already constructed the supply rate (2.6) with desired properties. How
can we construct the dissipation inequality (2.5) for such a supply rate? We can use the
following approach.

Theorem 2. Suppose ξk+1 = Aξk + Bwk and ξ∗ = Aξ∗. Consider a quadratic supply rate
(2.6). If there exists a positive semidefinite matrix P ∈ Rnξ×nξ s.t.[

ATPA− ρ2P ATPB
BTPA BTPB

]
−X ≤ 0 (2.8)

then we have V (ξk+1)− ρ2V (ξk) ≤ S(ξk, wk) with V (ξ) = (ξ − ξ∗)TP (ξ − ξ∗).

Proof: Based on (2.8), we directly have[
ξk − ξ∗
wk

]T([
ATPA− ρ2P ATPB

BTPA BTPB

]
−X

)[
ξk − ξ∗
wk

]
≤ 0

Notice we have V (ξk+1) =

[
ξk − ξ∗
wk

]T [
ATPA ATPB
BTPA BTPB

] [
ξk − ξ∗
wk

]
. This immediately leads

to the desired conclusion.

Example: Analysis of the gradient method. Now we apply the above theorem to
analyze the gradient method. For the gradient method, we have A = I, B = −αI, and
C = I. As discussed in the last section, we can choose the following X to guarantee S ≤ 0:

X =

[
CT 0
0 I

] [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
C 0
0 I

]
=

[
2mLI −(m+ L)I

−(m+ L)I 2I

]
Now it is straightforward to verify that the condition (2.8) leads to the following condition[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
≤ 0 (2.9)

if we choose P = 1
λ
I. Now we can apply this condition to obtain the convergence rate ρ for

the gradient method with various stepsize choices.
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• Case 1: If we choose α = 1
L

, ρ = 1− m
L

, and λ = 1
L2 , we have[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
−m2

L2
m
L2

m
L2 − 1

L2

]
=

1

L2

[
−m2 m
m −1

]
(2.10)

The right side is clearly negative semidefinite due to the fact that

[
a
b

]T [−m2 m
m −1

] [
a
b

]
=

−(ma− b)2 ≤ 0. Therefore, the gradient method with α = 1
L

converges as

‖xk − x∗‖ ≤
(

1− m

L

)k
‖x0 − x∗‖ (2.11)

• Case 2: If we choose α = 2
m+L

, ρ = L−m
L+m

, and λ = 2
(m+L)2

, we have[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
0 0
0 0

]
(2.12)

The zero matrix is clearly negative semidefinite. Therefore, the gradient method with
α = 2

m+L
converges as

‖xk − x∗‖ ≤
(
L−m
L+m

)k

‖x0 − x∗‖ (2.13)

Notice L ≥ m > 0 and hence 1 − m
L
≥ L−m

L+m
. This means the gradient method with

α = 2
m+L

converges slightly faster than the case with α = 1
L

. However, m is typically

unknown in practice. The step choice of α = 1
L

is also more robust (we will discuss this in
later sections). The most popular choice for α is still 1

L
.

The key message in the above example is that to apply the dissipation inequality for
linear convergence rate analysis, one typically follows two steps:

1. Choose a proper quadratic supply rate function S satisfying certain desired properties,
e.q. S(ξk, wk) ≤ 0.

2. Find a positive semidefinite matrix P satisfying (2.8) and obtain a quadratic storage
function V which is then used to construct the dissipation inequality.

2.3.4 Graphical Interpretation

When analyzing Fu(G,∆), we aim to draw conclusions on the pair (v, w) in the set {(v, w) :
v = G(w), w = ∆(v)}. If for any w = ∆(v), we have S ≤ 0, then we have

{(v, w) : v = G(w), w = ∆(v)} ⊂ {(v, w) : v = G(w), S ≤ 0} (2.14)

If we can prove ξk converges at a certain linear rate for any pair (v, w) in the set {(v, w) :
v = G(w), S ≤ 0}, then we guarantee that ξk converges at the same linear rate for any pair
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Figure 2.2. Removing ∆ by Enforcing the Supply Rate Condition S ≤ 0

(v, w) satisfying v = G(w) and w = ∆(v) simultaneously. Hence we can completely remove
the troublesome element ∆ from our analysis by enforcing the condition S ≤ 0. A graphical
interpretation for this idea is shown in Figure 2.2. We still have v = G(w). But we remove
∆ by enforcing the inequality S ≤ 0.
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