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In the past lectures, we focus on the case where G is a linear time-invariant (LTI) system.
Lyapunov theory can be easily generalized beyond that case. We can allow G to be time-
varying or stochastic. In this lecture, we will cover a few extensions of time-invariant models
including linear parameter-varying (LPV) systems, linear time-varying (LTV) systems, and
dynamical jump systems. Similar Lyapunov arguments can be used to derive linear matrix
inequality (LMI) conditions for these models.

3.1 More Internal Stability Results

In Lecture 1, we talked about the internal stability of LTI systems. Recall that the internal
stability of an LTI system xk+1 = Axk can be tested using an LMI condition ATPA−P < 0.
The proof is based on a Lyapunov argument. Now we present similar stability conditions for
time-varying or stochastic systems.

• LPV systems: In Lecture 1, we have briefly talked about the LPV system xk+1 =
A(ζk)xk where the matrix A is a function of a scheduling parameter ζk. We know this
system is internally stable if there exists a positive definite matrix P such that

A(ζ)TPA(ζ)− (1− ε)P ≤ 0, ∀ζ (3.1)

The proof is based on Lyapunov arguments. Define V (x) = xTPx. We left and right
multiply both sides of the above inequality with xTk and xk and obtain V (xk+1) ≤
(1− ε)V (xk) which immediately leads to the desired conclusion. The numerical imple-
mentation of (3.1) is tricky since it has to be satisfied for all ζ. A heuristic is to grid
ζ and then the infinite dimensional LMI condition (3.1) is approximated by a finite
dimensional condition on the grid of ζ. This approach does introduce some numeri-
cal errors. It is also worth mentioning that sometimes we allow P to depend on the
parameter ζ and this leads to the so-called parameter-dependent Lyapunov functions
which can reduce the conservatism in the stability analysis.

• LTV system: Now we consider an LTV system xk+1 = Akxk where we do know how
A explicitly depends on k. This system is internally stable if there exists a positive
definite matrix P such that

AT
kPAk − (1− ε)P ≤ 0, ∀k (3.2)
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Again, the proof is based on Lyapunov arguments. Define V (x) = xTPx. We left
and right multiply both sides of the above inequality with xTk and xk and obtain
V (xk+1) ≤ (1 − ε)V (xk) which immediately leads to the desired conclusion. Again
the LMI condition here is infinite dimensional. One may need to solve this condition
analytically. Similar to the LPV case, we can allow P to depend on k and formulate a
less conservative LMI condition. If there exist a sequence of positive definite matrices
Pk such that Pk ≥ cI,∀k for some positive c and

AT
kPk+1Ak − (1− ε)Pk ≤ 0,∀k

then the LTV system is stable. The proof is based on defining a time-varying Lyapunov
function as V (xk) = xTkPkxk. We can left and right multiply both sides of the above
LMI with xTk and xk and obtain V (xk+1) = xTk+1Pk+1xk+1 ≤ (1 − ε)xTkPkxk = (1 −
ε)V (xk) which immediately leads to the desired conclusion.

• Jump systems: Consider the system xk+1 = Aikxk where {ik} itself is a stochastic
process. This system is mean square stable if E‖xk‖2 converges to 0 given any initial
conditions. Notice the state matrix depends on the jump parameter ik. For simplicity,
we assume {ik} is an I.I.D process sampled from a finite set {1, 2, . . . , n}. Suppose
Pr(ik = i) = pi. Again, we can use Lyapunov arguments to obtain stability conditions
in the form of LMIs. This jump system is mean square stable if there exists a positive
definite matrix P such that

n∑
i=1

piA
T
i PAi − P < 0 (3.3)

The proof is similar to the LTI system case but we need to use a little bit probability
theory. The above LMI ensures

∑n
i=1 piA

T
i PAi − (1 − ε)P ≤ 0 for some sufficiently

small positive ε. Again we define V (xk) = xTkPxk. A key relation is E[V (xk+1)|xk] =∑n
i=1 pix

T
kA

T
i PAixk.1 Therefore, we can left and right multiply both sides of the LMI

with xTk and xk and obtain E[V (xk+1)|xk] =
∑n

i=1 pix
T
kA

T
i PAixk ≤ (1 − ε)xTkPkxk =

(1−ε)V (xk). Then we can take the full expectation and iterate the resultant inequality
to establish the mean square stability. Notice when n = 1, the condition (3.3) just
recovers the standard LMI condition for the LTI system. One can also allow ik to
be sampled from a Markov chain, and that leads to the so-called Markov jump linear
system (MJLS). The stability conditions for MJLS are in the form of coupled LMIs,
which are more complicated than (3.3). We skip the details here.

Other types of systems. There are many other types of linear dynamical systems includ-
ing periodic systems that can be handled by similar Lyapunov arguments. We will not cover
all of them. The key message is that time-invariance is not required by Lyapunov theory.

1To be more precise, the conditional expectation should be taken on Fk which is the σ-algebra at k. We
avoid such mathematical machinery here. Just think that if xk is known, then the only source for randomness
is ik and we just average Vk based on the distribution of ik.
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From analysis to design. In the controls field, typically we first study analysis conditions
and then tailor these analysis conditions into control design tools. The stability conditions
that we talked about here can also be tailored as design conditions that are useful for sta-
bilizing control. To illustrate the potential difficulty, we present one example here. Suppose
we want to control an LTI system xk+1 = Axk +Buk. Suppose we want to use a linear state
feedback control law uk = Kxk to stabilize the plant. Based on the stability condition, we
know the closed-loop system xk+1 = (A + BK)xk is stable if there exists a positive definite
matrix P such that

(A+BK)TP (A+BK)− P < 0.

The above condition is linear in P if K is given. However, for design problems, we need to
find K and P simultaneously. The issue is that the above inequality has bilinear terms and
quadratic terms. One typically combines congruence transformation with Shur complement
lemma to convert the above condition into a convex design condition. Applying Finsler’s
lemma is another way of doing things. We skip the details here. The key message is that
all the stability conditions we have talked about so far can be converted to some
LMIs which are useful in designing stabilizing controllers.

3.2 More Input-Output Gain Results

Now let’s take inputs into accounts. In Lecture 1, we presented some input-output analysis
for the following LTI system

xk+1 = Axk +Buk

yk = Cxk +Duk
(3.4)

We have shown that if there exists a positive semidefinite matrix P such that[
ATPA− P ATPB
BTPA BTPB

]
+

[
C D
0 I

]T [
I 0
0 −γ2I

] [
C D
0 I

]
≤ 0

then for any x0 and arbitrary input sequence {uk}, the system (3.4) satisfies the input-output
bound

∑N
k=0‖yk‖2 ≤ γ2

∑N
k=0‖uk‖2 +xT0Px0 for any N . Here γ is the input-output gain that

measures how much inputs can affect the outputs. The proof is based on standard Lyapunov
arguments. Again, we define V (xk) = xTkPxk. We left and right multiply both sides of the

LMI condition with
[
xTk uTk

]
and

[
xk
uk

]
and obtain V (xk+1)− V (xk) + ‖yk‖2− γ2‖uk‖2 ≤ 0.

Summing this inequality from k = 0 to N leads to the desired input-output bound.
Similar analysis can be performed for time-varying/stochastic systems.

• LPV systems: Now we consider the LPV system

xk+1 = A(ζk)xk +B(ζk)uk

yk = C(ζk)xk +D(ζk)uk
(3.5)
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where the matrices (A,B,C,D) depend on the scheduling parameter ζk. If there exists
a positive semidefinite matrix P such that[
A(ζ)TPA(ζ)− P A(ζ)TPB(ζ)
B(ζ)TPA(ζ) B(ζ)TPB(ζ)

]
+

[
C(ζ) D(ζ)

0 I

]T [
I 0
0 −γ2I

] [
C(ζ) D(ζ)

0 I

]
≤ 0, ∀ζ

then for any x0 and arbitrary input sequence {uk}, the system (3.5) satisfies the input-
output bound

∑N
k=0‖yk‖2 ≤ γ2

∑N
k=0‖uk‖2 + xT0Px0 for any N . The proof is almost

identical. Define V (x) = xTPx. We left and right multiply both sides of the LMI con-

dition with
[
xTk uTk

]
and

[
xk
uk

]
and obtain V (xk+1)−V (xk)+‖yk‖2−γ2‖uk‖2 ≤ 0 which

immediately leads to the desired conclusion. Again, the numerical implementation of
the LMI relies on griding heuristics. We may allow P to depend on the parameter ζ to
reduce the conservatism in the analysis. However, the use of such parameter-dependent
Lyapunov functions further increases the computational cost.

• LTV system: We can use similar Lyapunov arguments to obtain the following input-
output analysis condition for LTV systems[

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
+

[
Ck Dk

0 I

]T [
I 0
0 −γ2I

] [
Ck Dk

0 I

]
≤ 0, ∀k

Detailed derivations are omitted.

• Jump systems: Consider the following jump system

xk+1 = Aikxk +Bikuk

yk = Cikxk +Dikuk
(3.6)

where {ik} is the jump parameter sampled from a finite set {1, 2, . . . , n} in an I.I.D.
manner. Suppose Pr(ik = i) = pi. If there exists a positive semidefinite matrix P such
that

n∑
i=1

(
pi

[
AT

i PAi − P AT
i PBi

BT
i PAi BT

i PBi

]
+ pi

[
Ci Di

0 I

]T [
I 0
0 −γ2I

] [
Ci Di

0 I

])
≤ 0

then the system (3.6) satisfies
∑N

k=0 E‖yk‖2 ≤ γ2
∑N

k=0 E‖uk‖2 + ExT0Px0 for any N .
The proof is again based on standard Lyapunov arguments. (Verify this yourself!) We
can see the same trick has been applied again and again to obtain all these different
results.

From analysis to design. The analysis conditions in this section can also be tailored as
design conditions. The so-called H∞ state feedback synthesis is based on such ideas. Again,
one typically uses congruence transformation or Finsler’s lemma to rewrite the analysis
conditions for design purposes.
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3.3 More Results for Feedback Interconnection

We have talked about how to analyze linear systems. Now we can move on and analyze
“perturbed” versions of these linear systems.

G

∆

v

-

w

�

Figure 3.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

In the last lecture, we have introduced the dissipation inequality approach for the analysis
of the feedback interconnection Fu(G,∆) with G being an LTI system. The dissipation
inequality approach is based on Lyapunov arguments and can be easily extended for time-
varying or stochastic G. One still follows the two steps:

1. Choose a proper quadratic supply rate function S satisfying certain desired properties.

2. Solve some LMIs to construct the dissipation inequality that can be used to prove
stability/convergence.

Suppose G is an LTI system satisfying ξk+1 = Aξk + Bwk. If we want to construct an
exponential dissipation inequality V (ξk+1) ≤ ρ2V (ξk)+S(ξk, wk) and have chosen a quadratic

supply rate S =

[
ξk
wk

]T
X

[
ξk
wk

]
in Step 1, we can use the following LMI in Step 2:

[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0 (3.7)

Notice that if we define V (ξk) = ξTk Pξk, and left/right multiply the LMI condition with[
ξTk wT

k

]
and

[
ξk
wk

]
, then we immediately obtain V (ξk+1) ≤ ρ2V (ξk) +S(ξk, wk) which is the

exponential dissipation inequality. Again this is the standard Lyapunov argument. Now we
talk about how to extend the above LMI for time-varying or stochastic G.

• LPV systems: When G is an LPV system satisfying ξk+1 = A(ζk)ξk + B(ζk)wk, the
exponential dissipation inequality holds if there exists a positive definite matrix P such
that [

A(ζ)TPA(ζ)− P A(ζ)TPB(ζ)
B(ζ)TPA(ζ) B(ζ)TPB(ζ)

]
−X(ζ) ≤ 0, ∀ζ
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The proof is standard. We just define V (x) = xTPx, and left/right multiply both sides

of the LMI condition with
[
ξTk wT

k

]
and

[
ξk
wk

]
. It is worth mentioning that X typically

depends on C(ζ) for LPV systems. Hence we have a parameter-dependent quadratic
supply rate. Again, we can refine the above analysis by using parameter-dependent P .

• LTV system: For LTV systems, the LMI condition is modified as[
AT

kPk+1Ak − Pk AT
kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
−Xk ≤ 0, ∀k

The proof is based on similar Lyapunov arguments.

• Jump systems: When G is a linear jump system satisfying xk+1 = Aikξk +Bikwk where
{ik} is the jump parameter sampled using the I.I.D. distribution Pr(ik = i) = pi.
Suppose we have chosen the following parameter-dependent supply rate

S(ξk, wk) =

[
ξk
wk

]T
Xik

[
ξk
wk

]
If there exists a positive definite matrix P such that

n∑
i=1

(
pi

[
AT

i PAi − ρ2P AT
i PBi

BT
i PAi BT

i PBi

]
− piXi

)
≤ 0

then we have the expected dissipation inequality EV (ξk+1) ≤ ρ2EV (ξk) + ES(ξk, wk).
The proof is also based on standard Lyapunov arguments. We just define V (x) = xTPx,

and left/right multiply both sides of the LMI condition with
[
ξTk wT

k

]
and

[
ξk
wk

]
. Then

the desired expected dissipation inequality follows from the facts

E[V (ξk+1)|Fk] =
n∑

i=1

(
pi

[
ξk
wk

]T [
AT

i PAi AT
i PBi

BT
i PAi BT

i PBi

] [
ξk
wk

])

E[S(ξk, wk)|Fk] =
n∑

i=1

(
pi

[
ξk
wk

]T
Xi

[
ξk
wk

])
The expected dissipation inequality can be used to show the mean square stabil-
ity/convergence of Fu(G,∆) when G is a linear jump system. For example, if we
know ES ≤ 0 in advance, the dissipation inequality directly leads to a convergence
bound EV (ξk) ≤ ρ2kEV (ξ0).

From analysis to design. The robustness analysis conditions presented in this section
can also be tailored as control synthesis conditions. Typically some iterative heuristics such
as D-K iteration will be used. If you are interested in this topic, send me an email.

3-6



ECE 598 Lecture 3 — 01/24/2019 Spring 2019

Input-output gain of feedback interconnection. We can also modify the dissipation
inequality approach to analyze the input-output gain of a feedback interconnection. Actually
this setup is more common for robust control research. We will talk about this topic in the
third part of the course.

3.4 Summary

.
We can observe several trends in the developments of control theory.

1. From LTI systems to time-varying or stochastic systems: Lyapunov theory
allows us to extend the stability theory for LTI systems to time-varying or stochastic
cases (Sections 3.1 and 3.2).

2. From linear systems to feedback interconnections (“perturbed” versions of
linear systems): Lyapunov theory allows us to study some nonlinear systems as
feedback interconnection of a linear system and a perturbation (Section 3.3).

3. From performance analysis to control design: Many stability conditions can be
further tailored for control design purposes. Typically one needs to manipulate LMIs
via routinized tricks or heuristics.
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