
ECE 598: Interplay between Control and Machine Learning Spring 2019

Lecture 5
Connection between Stochastic Optimization Methods and Feedback Systems

Lecturer: Bin Hu, Date:01/31/2019

In this lecture, we start to talk about stochastic optimization methods for the following
finite-sum ERM

minimize
x∈Rp

f(x) :=
1

n

n∑
i=1

fi(x) (5.1)

where f : Rp → R is a strongly-convex objective function. We will introduce several popular
finite-sum algorithms and discuss how these methods can be represented as feedback dynam-
ical systems as shown in Figure 5.1. In the next lecture, we will discuss how the dissipation
inequality approach covered in the previous lectures can be used to unify the analysis of
stochastic optimization methods.

G

∆

v

-

w

�

Figure 5.1. The Block-Diagram Representation for Feedback Interconnection Fu(G,∆)

5.1 Stochastic Optimization Methods for ERM

A classical way to solve (5.1) is the gradient method, which uses the following iteration:

xk+1 = xk − α∇f(xk) (5.2)

Since f is strongly convex, the gradient method with a well-chosen constant stepsize
converges at a linear rate. To achieve accelerated convergence, we can apply Nesterov’s
method. Both the gradient method and Nesterov’s method require computing a full gradient
∇f(xk) at each step. Hence the iteration cost of these methods scale linearly with n. This
leads to a high iteration cost when the size of the training set is large.

Consequently, stochastic optimization methods become more popular for large-scale ERM
problems. Now we give a few examples.

5-1



ECE 598 Lecture 5 — 01/31/2019 Spring 2019

• Stochastic gradient method: The baseline algorithm for large-scale learning tasks is
the stochastic gradient (SG) method that iterates as

xk+1 = xk − α∇fik(xk) (5.3)

where for each step k, the index ik is sampled uniformly from the set {1, 2, . . . , n}. The
per iteration cost of the SG method is independent of n. At every step k, only one (or a
small batch of) data point is sampled for gradient evaluation. The stochastic gradient
∇fik(xk) is an estimate for the true gradient ∇f(xk). The hope is that in the long run
the stochastic gradient method leads to a solution that works reasonably well in some
average sense. The SG method is the most popular optimization method for large-scale
learning tasks. However, one issue is that the SG method only converges linearly to
some tolerance of the optimum for a well-chosen constant stepsize. Just think about
that initializing the SG method from the optimal point x∗ satisfying ∇f(x∗) = 0.
Notice ∇f(x∗) = 0 does not mean ∇fi(x∗) = 0. Hence the SG method will not stay
at this optimal point even if it is initialized there. The issue is that x∗ is not a fixed
point for the SG method. If diminishing stepsize is used, the SG method will converge
to the optimum at a sublinear rate.

• Stochastic average gradient (SAG): Compared with the stochastic gradient ∇fik(xk),
an average gradient may be used to provide a better estimate for the true gradient.
The basic idea is that one can use a vector yk to memorize the gradient on each data
point as follows

y
(i)
k+1 :=

{
∇fi(xk) if i = ik
y
(i)
k otherwise

. (5.4)

where at each step k, a random training example ik is drawn uniformly from the set
{1, 2, . . . , n}. Hence, at each k, one still only samples one data point and updates y

(i)
k

for that data point. Since the vector y has memorized the gradient on all the data
points, averaging y should lead to a better estimate for the full gradient ∇f . SAG uses
such an average gradient and iterates as

xk+1 = xk − α

(
1

n

n∑
i=1

y
(i)
k+1

)
(5.5)

Therefore, at every step k, SAG first updates y for the average gradient evaluation
and then updated x using the average gradient. With well-chosen constant stepsize α,
SAG converges to the optimal solution of ERM. Why does SAG work? Intuitively, as
xk converges to the optimal point x∗, the change in xk becomes smaller and smaller.

Hence the average value
(

1
n

∑n
i=1 y

(i)
k+1

)
approximates the true gradient better and

better, and eventually converges to the true gradient. The detailed analysis for SAG
is quite lengthy. This motivates the development of SAGA.

5-2



ECE 598 Lecture 5 — 01/31/2019 Spring 2019

• SAGA: The idea is similar to SAG, but the update for xk+1 is modified as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k +

1

n

n∑
i=1

y
(i)
k

)
(5.6)

To see the difference between SAG and SAGA, just notice SAG’s update rule (5.5) can
be rewritten as

xk+1 = xk − α

(
∇fik(xk)− y(ik)k

n
+

1

n

n∑
i=1

y
(i)
k

)
(5.7)

Although the update rules for SAG and SAGA are similar, the convergence rate proof
for SAGA is much simpler. This partially explains why SAGA gets more popular than
SAG. The LMI tools in the controls field can be used to tell which method is easier to
analyze at the early stage of algorithm developments. We will come back to this point
later.

In this lecture, we focus on the above methods. In the next section, we will represent
the above methods as feedback interconnections and comment on other stochastic methods,
e.g. SVRG, Finito, and SDCA. Hopefully you will be convinced that stochastic optimization
methods for ERM are just feedback dynamical systems.

5.2 Stochastic Methods as Feedback Systems

To model stochastic optimization methods as feedback systems, we need to allow either ∆
or G to depend on the sampling index ik. This leads to the following two formulations.

1. We can use an LTI system G and a stochastic perturbation ∆ to form a feedback model
for the SG method (and SVRG-like methods).

2. We can use a dynamical jump system G and a deterministic static nonlinearity ∆ to
form a feedback model for SAGA-like methods.

5.2.1 Using stochastic ∆ to model SG

The SG method can be modeled as a feedback interconnection Fu(G,∆) shown in Figure 5.1
if we choose w = ∆(v) as a stochastic nonlinear mapping wk = ∇fik(vk) and set G to be the
following LTI system

ξk+1 = ξk − αwk
vk = ξk

To see this, we just set ξk = xk. Then the first equation in the above LTI model becomes
xk+1 = xk − αwk = xk − α∇fik(vk) = xk − α∇fik(xk). Notice in the modeling for the

5-3



ECE 598 Lecture 5 — 01/31/2019 Spring 2019

gradient method xk+1 = xk − α∇f(xk), we choose ∆ as a static nonlinearity ∇f . For
the SG method, the perturbation ∆ depends on ik. Therefore, it is not surprising that
the convergence rate proofs for the gradient method and the SG method are quite similar.
Notice that the dissipation inequality approach presented in Lecture 2 can be used to handle
various types of ∆. Actually the stochastic mapping ∇fik can also be directly handled via
dissipation inequality as long as we are able to construct some informative supply rates for
such a mapping.

In later lectures, we will show that standard assumptions (smoothness, convexity, etc)

on fi can be manipulated as quadratic supply rate conditions E
[
ξk
wk

]T
X

[
ξk
wk

]
≤ M with

well-chosen X and M . Such supply rate conditions can be used to recover standard rate
bounds for the SG method via our analysis routine.

Extensions. Many other stochastic methods can also be modeled as feedback intercon-
nections of an LTI system G and a stochastic perturbation ∆. To handle stochastic gradient
with momentum, we only need to modify the matrices (A,B,C) in the LTI model of G. To
handle SVRG-like methods, we only need to modify ∆. We will cover SVRG in the future.

5.2.2 Jump system models for SAGA-like methods

SAGA and SAG can be rewritten as special cases of the following general jump system

ξk+1 = Aikξk +Bikwk

vk = Cξk

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)


(5.8)

The above general jump system model is just an interconnection of a linear jump system G

and a static nonlinearity ∆ that maps v to w as wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)

. Here, ∆ depends on the

gradient information of all the data points in the training set. It seems that the computation
of wk at each k requires gradient information on all the data points. However, Bik is typically
sparse for SAGA-like methods. Therefore, Bikwk only involves gradient evaluation on one
data point, ensuring the low per-iteration cost of SAGA-like methods.

The feedback interconnection Fu(G,∆) provides a unified model for SAGA-like methods
in the sense that we can rewrite SAG, SAGA, and many other variants in this form by
properly choosing (Aik , Bik , C) for the linear jump system G. Now we show how to choose
(Aik , Bik , C) for SAG and SAGA.

5-4



ECE 598 Lecture 5 — 01/31/2019 Spring 2019

• Jump system model for SAG: First note that the gradient update rule for SAG is
(5.4): y

(i)
k+1 = ∇fi(xk) if i = ik and y

(i)
k+1 = y

(i)
k otherwise. Define the following stacked

vector:

yk =


y
(1)
k

y
(2)
k
...

y
(k)
n

 (5.9)

At every step, the y information is almost unchanged except on the ik-th data point.
This can be summarized by the jump system iteration:

yk+1 =
(
(In − eikeTik)⊗ Ip

)
yk +

(
(eike

T
ik

)⊗ Ip
)
wk (5.10)

where wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]
, and ei is an n-dimensional vector whose i-th

entry is 1 and other entries are 0. Here the notation “⊗” denotes the Kronecker
product.1 Clearly, eie

T
i is a matrix whose (i, i)-th entry is 1 and all other entries are 0.

Now we can rewrite (5.7) as

xk+1 = xk −
α

n
(eTik ⊗ Ip)(wk − yk)−

α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− eik)T ⊗ Ip

)
yk −

α

n
(eTik ⊗ Ip)wk

(5.11)

where e is a vector whose entries are all 1. Since vk = xk, we can combine (5.10) and
(5.11) to obtain the following jump system G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− eik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−α

n
eTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (5.12)

Since we already have w = ∆(v), we can represent SAG as Fu(G,∆) where G is
described by the above linear jump system model. Notice in this case the state of G is

ξk :=

[
yk
xk

]
.

• Jump system model for SAGA: Notice the update of yk is still captured by (5.10)

with wk =
[
∇f1(xk)T · · · ∇fn(xk)

T
]T

. Now we can rewrite (5.6) as

xk+1 = xk − α(eTik ⊗ Ip)(wk − yk)−
α

n
(eT ⊗ Ip)yk

= xk −
α

n

(
(e− neik)T ⊗ Ip

)
yk − α(eTik ⊗ Ip)wk

(5.13)

1To illustrate how Kronecker product works, just notice

[
a b
c d

]
⊗ Ip =

[
aIp bIp
cIp dIp

]
.

5-5



ECE 598 Lecture 5 — 01/31/2019 Spring 2019

Since vk = xk, we can combine (5.10) and (5.13) to obtain the following jump system
G mapping from w to v:[

yk+1

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n
(e− neik)T ⊗ Ip Ip

] [
yk
xk

]
+

[
(eike

T
ik

)⊗ Ip
(−αeTik)⊗ Ip

]
wk

vk =
[
0̃T ⊗ Ip Ip

] [yk
xk

] (5.14)

Again, we have ξk =

[
yk
xk

]
. Putting the above model for G in a feedback loop with ∆

directly realizes SAGA as a special case of (5.8).

Fixed points of the jump system models for SAG and SAGA. Suppose x∗ sat-
isfies ∇f(x∗) = 0. Then we define w∗ =

[
∇f1(x∗)T · · · ∇fn(x∗)T

]
. Next we can set

ξ∗ =
[
(w∗)T (x∗)T

]T
, and v∗ = x∗. Using the fact that

∑n
i=1∇fi(x∗) = 0, we can ver-

ify that (ξ∗, w∗, v∗) provides a fixed point for the jump system model of SAG and SAGA.

If ξk converges to ξ∗, then xk converges to x∗ and y
(i)
k converges to ∇fi(x∗). It SAGA and

SAG are initialized at such fixed points, they are going to stay there. This partially fixes
the issue of the SG method.

Extensions. Many other SAGA-like methods including Finito, SDCA, and point-SAGA
can be directly modeled using the above jump system model. We only need to modify the
matrices (Aik , Bik , C).

Unifying analysis via dissipation inequality. In the last lecture, we have shown that
the dissipation inequality approach can be extended for feedback systems where the “nom-
inal” part G is a linear jump system. We can expect that the LMI conditions presented in
Lecture 3 can be directly applied to analyze the convergence rates of SAGA-like methods.
We will cover this in the next lecture.

5-6


