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Lecture 6
Dissipation Inequality for Stochastic Finite-Sum Methods

Lecturer: Bin Hu, Date:02/05/2019

In the last lecture, we have shown that stochastic finite-sum methods can be represented
as feedback systems. In Lecture 3, we have presented the dissipation inequality approach as
a general analysis tool for feedback systems. In today’s lecture, we will discuss how to tailor
the dissipation inequality approach for stochastic finite-sum methods.

Suppose G is an LTI system satisfying ξk+1 − ξ∗ = A(ξk − ξ∗) + B(wk − w∗). Suppose

we know S =

[
ξk − ξ∗
wk − w∗

]T
X

[
ξk − ξ∗
wk − w∗

]
≤ 0 for any w = ∆(Cξ).1 If there exists a positive

definite matrix P s.t. [
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0, (6.1)

then we have V (ξk+1) ≤ ρ2V (ξk) + S ≤ ρ2V (ξk) where V (ξk) := (ξk − ξ∗)TP (ξk − ξ∗).
This establishes the linear convergence rate bound ‖ξk − ξ∗‖ ≤

√
cond (P )ρk‖ξ0 − ξ∗‖. We

have already discussed how to perform such an analysis for the gradient method. To han-
dle stochastic finite-sum methods, we only need to make some minor modification to the
dissipation inequality approach. We first present the high-level ideas.

• Interconnection of an LTI system G and stochastic ∆: In this case, one typically
will be able to construct some expected supply rate condition ES ≤M . Then the LMI
condition (6.1) can still be used to construct a (almost sure) dissipation inequality
V (ξk+1) ≤ ρ2V (ξk) + S. How to obtain a convergence bound from such a dissipation
inequality? Since the supply rate condition holds in the average sense, we have to
take expectation of the dissipation inequality and obtain EV (ξk+1) ≤ ρ2EV (ξk) + ES.
Depending on what M is , this expected dissipation inequality can be used to prove
various things. For example, when analyzing the stochastic gradient method for smooth
strongly-convex fi, we will figure out that M is just a constant, and the dissipation
inequality can be iterated to show EV (ξk) ≤ ρ2V (ξ0) + M

1−ρ2 . This just states that the
stochastic gradient method converges linearly to a small ball whose size is controlled by
M

1−ρ2 . Notice in this case, the supply rate is not decreasing to 0 and the total internal
energy is not going to converge to 0.

• Interconnection of a jump system G and a deterministic nonlinearity ∆: As
discussed in Lecture 3, we can use the property of ∆ to construct some quadratic supply

1Here we assume vk = Cξk and hence w = ∆(v) = ∆(Cξ).
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rate conditions and then analyze the feedback interconnection using the following LMI

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

]
−X

)
≤ 0.

Here we assume X is independent of ik. This type of supply rate conditions arise
naturally when the matrix C in G does not depend on ik and ∆ is deterministic. The
above LMI can be directly applied to SAGA-like methods.

Now we give a more detailed discussion.

6.1 Incorporating Multiple Supply Rate Conditions

In the dissipation inequality framework, we replace the troublesome perturbation ∆ with a
quadratic supply rate condition. Relaxing the relation v = ∆(w) as a quadratic constraint
can introduce some conservatism to the analysis. We can reduce the conservatism in the
analysis by including multiple supply rate conditions. Suppose we have specified a sequence
of symmetric Xj (j = 1, . . . , J) such that the following inequalities hold for any (ξ, w)
satisfying w = ∆(Cξ), [

ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
≤ 0, ∀k

Now still consider an LTI model ξk+1 − ξ∗ = A(ξk − ξ∗) + B(wk − w∗). We define

Sj(ξk, wk) =

[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
. If there exists a positive definite matrix P and

non-negative scalers λj (j = 1, . . . , J) s.t.[
ATPA− ρ2P ATPB

BTPA BTPB

]
≤

J∑
j=1

λjXj, (6.2)

then we have V (ξk+1) ≤ ρ2V (ξk) + S ≤ ρ2V (ξk) where V (ξk) := (ξk − ξ∗)TP (ξk − ξ∗) and
S =

∑J
j=1 λjSj. The non-negativity of λj ensures S ≤ 0. In the LMI (6.2), both P and λj

are decision variables. Therefore, incorporating multiple supply rate conditions just leads
to a similar LMI condition with more decision variables.

Why is (6.2) less conservative than (6.1)? If only one supply rate condition is used (let’s
say we just use X1), the resultant LMI condition is just (6.1) with X = X1. In this case, if
(6.1) is feasible, then (6.2) is also feasible with λ1 = 1, and λj = 0 (j 6= 1) (we just choose the
same P ). The reverse direction is not true. If (6.2) is feasible, (6.1) with X = X1 may not be
feasible. Introducing multiple supply rate conditions helps in many situations. In addition,
implementing (6.2) is as easy as implementing (6.1). Therefore, it is almost free to include
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extra supply rate conditions if we only care about obtaining numerical rate certifications.
Of course, adding more decision variables could cause trouble for analytical rate proofs.
Therefore, a more practical way of doing things is to first use numerical implementation to
figure out a minimum number of relevant supply rate conditions and then start analytical
proofs with those supply rate conditions.

6.2 Dissipation Inequality for Stochastic Gradient

Now we present a detailed analysis for the SG method under the following two assumptions:

1. f is m-strongly convex.

2. fi is L-smooth and convex for all i.

Under these two assumptions, we can show that SGD satisfies a bound in the following
form:

E‖xk − x∗‖2 ≤ ρ2k‖x0 − x∗‖2 +H (6.3)

where ρ2 = 1− 2mα +O(α2) and H = O(α). Here ρ2 quantifies the convergence speed and
H quantifies the accuracy. Therefore, for SGD, there is a fundamental trade-off between
the convergence speed and the accuracy. If one wants a very accurate solution, one has to
decrease α so that H is decreased. However, ρ2 increases as α decreases and the convergence
speed becomes slower.

As mentioned before, the supply rate condition used to prove (6.3) has a form ES ≤M .
Recall that the SG method is equivalent to a feedback system Fu(G,∆). Here ∆ is a
stochastic operator mapping v to w as wk = ∇fik(vk). In addition, G is governed by an
LTI model with A = I, B = −αI, and C = I. We emphasize that for the SG method we
have ξk+1 − ξ∗ = A(ξk − ξ∗) +Bwk and we do not shift wk to (wk −w∗). Again, we perform
our analysis in two steps. In Step 1, we construct the supply rates. In Step 2, we solve an
LMI to construct the dissipation inequality.

1. Based on wk = ∇fik(vk), we can show the following inequalities:

E
[
vk − x∗
wk

]T [
0 −LI
−LI I

] [
vk − x∗
wk

]
≤ 2

n

n∑
i=1

‖∇fi(x∗)‖2 = M (6.4)

E
[
vk − x∗
wk

]T [
2mI −I
−I 0

] [
vk − x∗
wk

]
≤ 0 (6.5)

We skip the proofs here. Now we just set X1 =

[
0 −LI
−LI I

]
and X2 =

[
2mI −I
−I 0

]
.

Notice that it is the first supply rate that causes the convergence issue for the SG
method. Since this supply rate keeps on delivering energy to the system, the internal
energy does not decrease to 0.
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2. Now we test if there exists P > 0 and non-negative scalers (λ1, λ2) such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
− λ1X1 − λ2X2 ≤ 0. (6.6)

If so, we have

E(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2E(ξk − ξ∗)TP (ξk − ξ∗)

≤λ1E
[
ξk − ξ∗
wk

]T
X1

[
ξk − ξ∗
wk

]
+ λ2E

[
ξk − ξ∗
wk

]T
X2

[
ξk − ξ∗
wk

]
≤λ1M

For simplicity, we can choose P = I. Recall for SGD we have A = I and B = −αI.
Hence (6.6) is equivalent to[

1− ρ2 −α
−α α2

]
− λ1

[
0 −L
−L 1

]
− λ2

[
2m −1
−1 0

]
≤ 0 (6.7)

Now we set the left side to be a zero matrix. We have λ1 = α2, λ2 = α − λ1L, and
ρ2 = 1− 2mλ2 = 1− 2mα + 2mLα2. Now the dissipation inequality leads to

E‖xk+1 − x∗‖2 ≤ ρ2E‖xk − x∗‖2 + λ1M

Iterating the above bound leads to

E‖xk − x∗‖2 ≤ρ2E‖xk−1 − x∗‖2 + λ1M

≤ρ4E‖xk−1 − x∗‖2 + (ρ2 + 1)λ1M

≤ρ2kE‖x0 − x∗‖2 +

(
∞∑
t=0

ρ2t

)
λ1M

=ρ2kE‖x0 − x∗‖2 +
λ1M

1− ρ2

From Step 2, we have ρ2 = 1−2mα+2mLα2 = 1−2mα+O(α2), and H = λ1M
1−ρ2 = O(α).

This leads to the desired conclusion (6.3).

6.3 Dissipation Inequality for SAGA-like Methods

In the last lecture, we have shown that SAGA and SAG can be rewritten in the feedback form
Fu(G,∆) where G is some jump system and ∆ is a nonlinearity. Specifically, the feedback
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interconnection is governed by the following iterative model:

ξk+1 = Aikξk +Bikwk

vk = Cξk

wk =


∇f1(vk)
∇f2(vk)

...
∇fn(vk)


(6.8)

We have also shown that the fixed point for SAGA and SAG is given by ξ∗ =
[
(w∗)T (x∗)T

]T
,

w∗ =
[
∇f1(x∗)T · · · ∇fn(x∗)T

]
, and v∗ = x∗ where x∗ satisfies 1

n

∑n
i=1∇fi(x∗) = 0. For any

ik, the following fixed point condition holds (verify this yourself!)

ξ∗ = Aikξ
∗ +Bikw

∗

v∗ = Cξ∗

w∗ =


∇f1(v∗)
∇f2(v∗)

...
∇fn(v∗)


(6.9)

To show (6.10) converges to its fixed point, we are actually looking at the following
iteration:

ξk+1 − ξ∗ = Aik(ξk − ξ∗) +Bik(wk − w∗)
vk − v∗ = C(ξk − ξ∗)

wk − w∗ =


∇f1(vk)−∇f1(v∗)
∇f2(vk)−∇f2(v∗)

...
∇fn(vk)−∇fn(v∗)


(6.10)

Again, we can analyze (6.10) by following the two steps in the dissipation inequality
framework.

1. First, we try to construct the following supply rate conditions for j = 1, . . . , J .[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
≤ 0. (6.11)

The supply rate constructions typically require using the matrix C and some properties
of ∆. We will cover this in more details in the next few lectures. For now, let’s look
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at one example. Suppose we know f1 is L-smooth and m-strongly convex. Hence we
know[

vk − v∗
∇f1(vk)−∇f1(v∗)

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
vk − v∗

∇f1(vk)−∇f1(v∗)

]
≤ 0. (6.12)

Now notice we have vk − v∗ = C(ξk − ξ∗) and ∇f1(vk)−∇f1(w∗) = (eT1 ⊗ I)(wk −w∗)
where e1 is a vector whose first entry is 1 and all other entries are 0. Therefore, we
have [

vk − v∗
∇f1(vk)−∇f1(v∗)

]
=

[
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
Substituting the above equation into (6.12) leads to[

ξk − ξ∗
wk − w∗

]T [
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

] [
ξk − ξ∗
wk − w∗

]
≤ 0

Therefore, we can just chooseX1 =

[
C 0p×(np)
0 eT1 ⊗ I

]T [
2mLI −(L+m)I

−(L+m)I 2I

] [
C 0p×(np)
0 eT1 ⊗ I

]
.

Clearly X1 depends on m, L, and C. You can imagine that properties of fi and f can
all be transformed into quadratic inequalities in the form of (6.11) via similar algebraic
manipulations.

2. Now we can perform our LMI-based analysis. If there exists a positive definite matrix
P and non-negative scalers λj s.t.

n∑
i=1

(
pi

[
AT
i PAi − ρ2P AT

i PBi

BT
i PAi BT

i PBi

])
≤

J∑
j=1

λjXj,

then we have the expected dissipation inequality EV (ξk+1) ≤ ρ2EV (ξk) + ES(ξk, wk)
where the storage function is defined as V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) and the supply
rate S is defined as

S(ξk, wk) =
J∑
j=1

λj

[
ξk − ξ∗
wk − w∗

]T
Xj

[
ξk − ξ∗
wk − w∗

]
.

The proof for this part is based on standard Lyapunov arguments you have seen
many times. We just left and right multiply both sides of the LMI condition with[
(ξk − ξ∗)T (wk − w∗)T

]
and

[
ξk − ξ∗
wk − w∗

]
. This directly leads to the desired dissipa-

tion inequality. The non-negativity of λj guarantees S ≤ 0 and hence we have the
linear convergence bound EV (ξk) ≤ ρ2kEV (ξ0). For given (Ai, Bi, ρ) and Xj, out test-
ing condition is linear in the decision variables P and λj, and can be solved as LMIs.
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6.4 Further Remarks

Numerically solving LMIs can be done by existing semidefinite program solvers. However,
analytically solving the LMIs may require case-by-case constructions of P . The good news
is that we can use the numerical solutions of LMIs to guide our constructions of analytical
proofs. We will see a few examples in Homework 1.

We can see that once we have the supply rate conditions, the constructions of dissipation
inequality can be somehow routinized by solving LMIs. But how to construct supply rates?
We have seen a few examples. We will cover the constructions of supply rates in more details
in the next few lectures.
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